Am2922 Eight Input Multiplexer with Control Register #### DISTINCTIVE CHARACTERISTICS - High speed eight-input multiplexer - On-chip Multiplexer Select and Polarity Control Register - Output polarity control for inverting or non-inverting output - Three-state output for expansion - · Common register enable, asynchronous register clear - AC parameters specified over operating temperature and power supply ranges ### **GENERAL DESCRIPTION** The Am2922 is an eight-input Multiplexer with Control Register. The device features high speed from clock to output and is intended for use in high speed computer control units or structured state machine designs. The Am2922 contains an internal register which holds the A, B and C multiplexer select lines as well as the POL (Polarity) control bit. When the Register Enable input (RE) is LOW, new data is entered into the register on the LOW-to-HIGH transition of the clock. When $\overline{\rm HE}$ is HIGH, the register retains its current data. An asynchronous clear input ($\overline{\rm CLR}$) is used to reset the register to a logic LOW level. The A, B and C register outputs select one of eight multiplexer data inputs. A HIGH on the Polarity Control flip- flop output causes a true (non-inverting) multiplexer output, and a LOW causes the output to be inverted. In a computer control unit, this allows testing of either true or complemented flag data at the microprogram sequencer test input. An active LOW Multiplexer Enable input ($\overline{\text{ME}}$) allows the selected multiplexer input to be passed to the output. When $\overline{\text{ME}}$ is HIGH, the output is determined only by the Polarity Control bit. The Am2922 also features a three-state Output Enable control (\overline{OE}) for expansion. When \overline{OE} is LOW, the output is enabled. When \overline{OE} is HIGH, the output is in the high impedance state. #### **BLOCK DIAGRAM** 03600B #### CONNECTION DIAGRAM Top View Note: Pin 1 is marked for orientation F-20 pin configuration identical to D-20, P-20. #### LOGIC SYMBOL LS001010 #### ORDERING INFORMATION AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired). | Valid Combinations | | | | | | | | |--------------------|---|--|--|--|--|--|--| | Am2922 | PC
DC, DCB, DM,
DMB
FM, FMB
LC, LCB, LM,
LMB
XC, XM | | | | | | | #### Valid Combinations Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish. #### PIN DESCRIPTION | Pin No. | Name | 1/0 | Description | |---------|--------------------------------|--------------|---| | 4, 6, 5 | A. B. C | T | Multiplexer Select Lines. One of eight multiplexer data inputs is selected by the A, B and C register outputs. | | 9 | POL | 1 | Polarity Control Bit. A HIGH register output causes a true (non-inverted) output and a LOW causes the output to be inverted. | | 2 | ME | i | Multiplexer Enable. When LOW, it enabled the 8-input multiplexer. When HIGH, the Y output is determined by only the Polarity Control bit. | | 3 | RE | 1 | Register Enable. When LOW, the Multiplexer Select and Polarity Control Register is enabled for loading. When HIGH, the register holds its current data. | | 8 | CLA | 1 | Clear. A LOW asynchronously resets the Multiplexer Select and Polarity Control Register. | | | D ₁ -D ₈ | 1 | Data Inputs to the 8-input multiplexer. | | 7 | СР | | Clock Pulse. When RE is LOW, the Multiplexer Select and Polarity Control Register changes state on the LOW-to-HIGH transition of CP. | | 16 | ŌĒ | | Output Enable. When LOW, the output is enabled. When HIGH, the output is in the high impedance state. | | 15 | \ <u>\</u> | | The chip output. | #### **FUNCTION TABLE** | | | INPUTS | | | | INTERNAL | | | INPUTS | | OUTPUT | | | | | |--------------------------------|---|----------|-------------|-----|----|----------|-------------------|---------------|--------------------------|----|--------|----|-----------|---|--| | MODE | С | В | A | POL | RE | CLR | СР | Qc | QB | QA | QPOL | ME | ŌĒ | Y | | | Clear | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | Ļ | H L
L L
X H | | Н
Б ₀
Z | | | | | | | | Reg. Disable | × | × | Х | х | Н | н | × | NC | NC | NC | NC | L | L | Ō _i /D _i
(Note 1) | | | Select
(Multiplex) | L
L
H
H
H | LLHHLLHH | L H L H L H | L/H | | H | | L L L H H H H | L H H L L H H | | L/H | L | · · · · · | D ₀ /D ₀ D ₁ /D ₁ D ₂ /D ₂ D ₃ /D ₃ D ₄ /D ₄ D ₅ /D ₅ D ₆ /D ₆ D ₇ /D ₇ | | | Multiplexer
Disable | × | Ϋ́ | × | × | × | H | × | X | × | X | L
H | H | L
L | H | | | Tri-state
Output
Disable | | | + | + | | | | х | х | × | х | х | н | Z
of the POL flip-1 | | NC = No Change X = Don't Care H = High L = Low t = Low-to-High Transition Z = High-Impedance AF001840 A versatile one-of-sixteen Test Select with Polarity Control and Test Select Hold. #### ABSOLUTE MAXIMUM RATINGS | V | |--| | Storage Temperature65°C to +150°C (Ambient) Temperature Under Bias55°C to +125°C | | Supply Voltage to Ground Potential | | Continuous0.5V to +7.0V | | DC Voltage Applied to Outputs For | | High Output State0.5V to +V _{CC} max | | DC Input Voltage0.5V to +5.5V | | DC Output Current, Into Outputs | | DC Input Current30mA to +5.0mA | | DG input Current | Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. #### **OPERATING RANGES** | Commercial (C) Devices Temperature | 0°C to +70°C
+4.75V to +5.25V | |------------------------------------|----------------------------------| | Military (M) Devices Temperature | +4.5V to +5.5V | DC CHARACTERISTICS over operating range unless otherwise specified | Parameters | Description | Test C | onditions (No | ite 2) | Min | Typ
(Note 1) | Max | Units | |-----------------|---|---|--|--------|-----|-----------------|-------|-------| | | | V _{CC} = MIN | MIL, IOH = -2 | .OmA | 2.4 | 3.4 | | \/-W- | | Vон | Output HIGH Voltage | V _{IN} = V _{IH} or V _{IL} | COM'L, IOH = | -6.5mA | 2.4 | 3.2 | | Volts | | | | | I _{OL} = 4.0mA | | | | 0.4 | | | ., | Output LOW Voltage | V _{CC} = MIN | I _{OL} = 8.0mA | | | | 0.45 | Volts | | VOL | Output LOW Voltage | VIN = VIH or VIL | I _{OL} = 20mA | | | | 0.5 | | | ViH | Input HIGH Level | Guaranteed input logical HIGH voltage for all inputs | | | 2.0 | | | Volts | | | | Consented input | logical I OW | MIL | | | 0.7 | .,., | | V _{IL} | Input LOW Level | Guaranteed input logical LOW voltage for all inputs COM'L | | COM'L | 0.8 | | | Volts | | Vı | Input Clamp Voltage | V _{CC} = MIN, I _{IN} = -18mA | | | | | - 1.5 | Volts | | <u> </u> | input olding verings | V | V _{CC} = MAX, ME, OE, RE | | | | -0.72 |] | | l _{IL} | Input LOW Current | $V_{IN} = 0.4V$ | | | | | - 2.0 | mA | | | | V _{CC} = MAX, | ME, OE, RE | | | | 40 | | | IH | Input HIGH Current | V _{IN} = 2.7V | D _N , A, B, C, POL, CP, CLR | | | | 50 | μ | | | | V _{CC} = MAX, | ME, OE, RE | | | | 0.1 | m/ | | lı . | Input HIGH Current | $V_{IN} = 5.5V$ | D _N , A, B, C, POL, CP, CLR | | | | 1.0 | 111/ | | | | | V _O = 0.4V | | | | -50 | | | loz | Off-State (High-Impedance) Output Current | $V_{CC} = MAX$ $V_O = 2.4V$ | | | | 50 | μΑ | | | Isc | Output Short Circuit Current
(Note 3) | V _{CC} = MAX | V _{CC} = MAX | | | | -100 | m/ | | lcc | Power Supply Current
(Note 4) | V _{CC} = MAX | | . 97 | 148 | m/ | | | Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading. 2. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type. 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 4. DN, A, B, C, POL, ME at Gnd. All other inputs and outputs open. Measured after a momentary ground then 4.5V applied to clock input. # SWITCHING CHARACTERISTICS ($T_A = +25$ °C, $V_{CC} = 5.0$ V) | Parameters | Description | Test Conditions | Min | Тур | Max | Units | |------------------|-----------------------|------------------------|-----|----------|-----|-------| | t _{PLH} | Clock to Y POL - LOW | | | 21 | 32 | 1 | | tpHL | Clock to 7 POL-LOW | | | 19 | 29 | ns | | ^t PLH | Clock to Y POL - HIGH | | | 16 | 24 | | | t _{PHL} | Clock to 1 POE-High | | | 19 | 29 | ns | | tPLH . | D _n to Y | | | 10 | 16 | T | | t _{PHL} | On to 1 | | | 13 | 19 | ns | | t _{PLH} | CLR to Y | C _L = 15pF | | 22 | 33 | | | ^t PHL | | R _L = 2.0kΩ | | 22 | 33 | ns | | t _{PLH} | ME to Y | | | 12 | 18 | | | t _{PHL} | ME to 1 | | | 12 | 18 | ns | | tzL . | | | | 8 | 14 | | | ^t zH | OE to Y | | * | 8 | 14 | ns | | tLZ | JE 10 1 | C _L = 5.0pF | | 10 | 17 | | | tHZ | | R _L = 2.0kΩ | | 10 | 17 | ns | | | A, B, C, POL | , | 10 | <u> </u> | | | | l _s | CE | | 15 | | | ns | | l _s | CLR Recovery | C _L = 15pF | 5 | <u> </u> | | ns | | | Clock | R _L = 2.0kΩ | 10 | Ĭ . | | | | t _{pw} | Clear (LOW) | | 10 | | | ns | | th | A, B, C, POL, CE | | 0 | | | ns | # SWITCHING CHARACTERISTICS over operating range unless otherwise specified* | Parameters | | | | ERCIAL
2922 | MILITARY
Am2922 | | | |------------------|-----------------------|------------------------|-----|----------------|--------------------|-----|-------| | | Description | Test Conditions | Min | Max | Min | Max | Unite | | tPLH | Clock to Y POL - LOW | | | 40 | | 47 | | | t _{PHL} | GIOGR TO T TOE - EOW | | | 34 | | 38 | ns | | ^t PLH | Clock to Y POL - HIGH | | | 29 | | 33 | ns | | t _{PHL} | Ground Trot-Harr | | | 35 | | 41 | l ns | | [†] PLH | D _n to Y | | | 19 | | 21 | ns | | tpHL | 5n to 1 | | | 22 | | 24 | l ns | | ^t PLH | CLR to Y | C _L = 50pF | | 39 | | 45 | | | t _{PHL} | | R _L = 2.0kΩ | | 39 | | 45 | ns | | tpLH | ME to Y | | | 22 | | 26 | ns | | t _{PHL} | | | | 19 | | 20 | lis | | tzL | _ | | | 19 | | 24 | ns | | ^t zh | ŌE to Y | | | 22 | | 29 | l | | tLZ | J 62 10 1 | C _L = 5.0pF | | 24 | | 30 | ns | | t _{HZ} | | $R_L = 2.0k\Omega$ | | 24 | | 30 | l "s | | t _s | A, B, C, POL | | 11 | | 12 | | | | ·s | CE | | 18 | | 20 | | ns | | t _s | CLR Recovery | C _L = 50pF | 6 | | 7 | | ns | | • | Clock | $R_L = 2.0 k\Omega$ | 11 | | 12 | | | | t _{pw} | Clear (LOW) | | 11 | | 12 | | ns | | th | A, B, C, POL, CE | | 3 | | 3 | | ns | ^{*}Switching Characteristics' performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9. ## LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS Note: Actual current flow direction shown. ### RELATED PRODUCTS | Part No. | Description | |------------|---------------------| | Am25LS2535 | 8-Input Multiplexer | | Am2923 | 8-Input Multiplexer |