GN8062

GaAs IC

For semiconductor laser drive

Features

- High-speed switching
- High output
- Pulse current and DC bias current can be controlled.

Parameter	Symbol	Rating	Unit				
Downer overally voltage	V _{DD}	6	V				
rower suppry voltage	V _{SS}	- 6	V				
Pin voltage	V _{IN}	-0.5 to V _{DD} -1.5	V				
	V _{Ip} * 5	1.5 to V _{DD}	V				
	V _{OUT} ^{*1}	V _{DD}	V				
	I _{DD} * 4	50	mA				
Power current	I _{SS}	40	mA				
Output current	I _{OUT}	145	mA				
Allowable power dissipation	P _D ^{* 2}	700	mW				
Channel temperature	T _{ch}	150 °C					
Storage temperature	T _{stg}	- 55 to +150	°C				
Operating ambient temperature	Topr ^{* 3}	-10 to +75	°C				

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

* 1 Do not apply the voltage higher than the set V_{DD} .

* 2 Guaranteed value of the unit at $Ta=25^{\circ}C$.

*3 Range in which the IC circuit function operates and not the guaranteed range of electric characteristics.

* 4 I_{DD} is a current when the pulse output current is zero.

*5 Voltage when the constant current source has been connected.

Parameter	Symbol	Test circuit	Condition	Min	Тур	Max	Unit
Pulse output current	I _{pmax.}	1	V_{DD} = 5V, V_{SS} = -5V, V_{IN} = 2V, I_p =120mA, R_L =10 Ω	100	120		mA
	I _{pmin.}	1	V_{DD} = 5V, V_{SS} = -5V, V_{IN} = 0.4V, I_p =120mA, R_L =10 Ω		1	5	mA
Supply current	I _{DD} ^{* 1}	2	$V_{DD} = 5V, V_{SS} = -5V, V_{IN} = 0.4V$		35	50	mA
	I _{SS}	2	$I_p=0, R_L=10\Omega$		25	40	mA
Input voltage	V _{IH}			2.5			V
	V _{IL}					0.4	V
Rise time	t _r * 2	3	$V_{DD}=5V, V_{SS}=-5V, I_p=100mA$			7	ns
Fall time	t _f * 2	3	$R_L=10\Omega$			5	ns

Electrical Characteristics ($Ta = 25^{\circ}C$)

Panasonic

- * 1 The current value to be supplied from the 5V power supply is a total sum of this value plus the pulse output current and bias output current.
- * 2 Waveform of input and output signals

tf ... 90% to 10%

Block Diagram

■ Caution for Handling

- 1) The recommended V_{IN} voltage is 2.5 to 3V for [H] and 0 to 0.4V for [L].
- 2) Do not apply V_{IN} while the power supply is OFF.
- For the current source to be connected to the V_{IP} pin, use a Si bipolar transistor as shown in the circuit diagram.

(Example: 2SD874)

To connect a resistor to the emitter or collector, use a resistor of a few ohm. The use of higher resistor may cause large change in the voltage at the V_{IP} pin, and may make the output waveform distortion. (See the pulse output current control example).

To use another current control circuit, set so that the $V_{\mbox{\rm IP}}$ pin voltage becomes around 2V.

- 4) When mounting, minimize the connection distance between the semiconductor laser and IC, and use the chip parts (C, R) of less parasitic effects.
- 5) Attention to damage by the power surge (see the example connection of the pin protection circuit).During handling, take care to ground the human body and solder iron tip.
- 6) When the power supply is turned ON and OFF, set the current value of the current source connected to the V_{IP} pin to zero. This is important to prevent the large current flow through the semiconductor laser during power ON/OFF.

When the power supply is ON, be sure to turn ON V_{DD} , after V_{SS} is completely equal to – 5V. When the power supply is OFF, be sure to turn OFF V_{SS} , after V_{DD} is completely 0V.

MA3068(Vz=6.8V,Cd=85pF,Rz=6Ω) ▶ ₹ GN8062 • −5.0V GND Vss ୷ NC \sim $\wedge \wedge$ VIN 200Ω to 2kΩ 50Ω 0 5.0V NC VDD OUT VIP

Connection example of pin protection circuit

Example of pulse output current control circuit

7) Pay attention to release the heat.

Panasonic