## IC for Electronic Ballasts

ILA3354

## Short Description

The bipolar monolithic integrated circuit triggers, monitors and turns-off RF-oscillation of an electronic ballast for fluorescent lamps dependent on several controland monitoring functions.

## Features

Minimum wiring complexity
Overtemperature protection without external
components
Malfunction detection
Timer output
Automatical reignition after lamp change

Pinning

| Pin 1 | TM | temperature mode selection |
| :--- | :--- | :--- |
| Pin 2 | CT | clock generator |
| Pin 3 | TR | trigger output, turn-off attenuation, oscillation detector |
| Pin 4 | GND | connection to ground |
| Pin 5 | EI | error indication input |
| Pin 6 | LW | input of lamp change |
| Pin 7 | S | switching output of the timer |
| Pin 8 | $V_{\mathrm{CC}}$ | supply voltage |

## Block diagram



## Characteristics of the IC

- The ILA3354 is a control- and monitoring-IC to drive an electronic ballast for fluorescent lamps.
- The IC actuates the oscillation of a self-oscillating circuit for generation of RF-shaped lamp current by means of trigger pulses. After successful excitation the oscillation is monitored and further trigger pulses are blocked.
- The IC has a timer with low-active output which is activated for one second after supply voltage was applied.
The switching output is effective for pre-heating and ignition systems.
- The IC consists an error indication input. In case of error indication the IC stops oscillation. Enquiry cycles realize interference reduction.
- After lamp change the IC starts oscillation again.
- The IC protects from overtemperature cutting oscillation. It is programmable when the oscillator circuit shall be triggered again.


## Functional Description

At the moment of current feeding at terminal $\mathrm{V}_{\mathrm{CC}}$, the IC generates the supply voltage via backup capacitor externally connected. As soon as an internal switching threshold of 7 V is reached, trigger pulses are delivered at the output TR with a repetition instalment of $960 \mu \mathrm{~s}$. After successful triggering of the oscillator circuit, an oscillation detector guarantees blocking of further trigger pulses. It identifies a stable oscillating process, after a minimum of oscillations is detected per timing.
As soon as a switching threshold of 8 V is reached, all logic units are reset and the timer output S is activated as well. The IC starts a counter, which interrups the control after one second.
Furthermore, the IC monitors the temperature and the oscillation circuit from a supply voltage of 8 V . The comparator input EI is useful for error detection. Voltage $>3.75 \mathrm{~V}$, applied at EI, are evaluated as error signals. The error signal is enqired and registered within a cycle repeating every $960 \mu \mathrm{~s}$. After registration of the error signal, a counter starts to generate a delay of one second. After this delay time, the voltage at EI is evaluated again. The error storage is set only after a second error, appearing within a directly following evaluation cycle. This error storage is resettable by a short-time power supply disconnection, or with input LW connected via a change of lamp.
The error storing causes the cutting further triggers and the control of the turn-off transistor as well, which turns the output TR to ground. Therefore, the turn-off transistor prevents the control of the oscillator circuit, attenuating it extremly quickly.
Thereby, the current consumption increases by the control of the turn-off transistor. This current amounts more than 5 mA , that the supply voltage across the backup capacitor at pin $\mathrm{V}_{\mathrm{CC}}$ breaks down (because nominal current
feed is less 5 mA ). With a switching threshold of 6 V , the control current of the turn-off transistor is switched off, that enables the supply voltage to rise up to the limiting voltage. Because the trigger pulse gate, blocked by the error memory, the oscillation can't start again.
With error storing and attenuation of the oscillation by overtemperature it can be defined via selection of the temperature mode, whether the oscillation is automatically triggered after cooling-down of the assembly, or only after mains disconnection.

## Absolute Maximum Ratings

|  | Pin | Symbol | min | max | unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| current consumption | $\mathrm{V}_{\mathrm{CC}}$ | $I_{\text {cceeff }}$ |  | 20 | mA |
| peak current for t < $100 \mu \mathrm{~s}$ | $\mathrm{V}_{\text {cc }}$ | $\mathrm{I}_{\text {ccm }}$ |  | 100 | mA |
| input voltage error indicator | EI | $\mathrm{V}_{\text {Err }}$ | -0.3 | $\mathrm{V}_{\mathrm{CC}}$ | V |
| input voltage lamp exchange input | LW | $\mathrm{V}_{\text {LW }}$ | -0.3 | 15 | V |
| voltage difference between $V_{\text {Lw }}$ and $V_{\text {CC }}$ for divider factor 16 via LW | LW | $\mathrm{V}_{\mathrm{LW}}{ }^{-} \mathrm{V}_{\text {CC }}$ |  | 6 | V |
| input current at pin TM | TM | $\mathrm{I}_{\text {TM }}$ |  | 1 | mA |
| negative current load for $t<1 \mu \mathrm{~s}$ with max. repeat frequency $=200 \mathrm{kHz}$ | TR | $\mathrm{I}_{\text {TR(neg. }}$ | -500 |  | mA |
| switching output current | S | 'S |  | 1 | mA |
| junction temperature |  | ${ }^{\text {j}} \mathrm{j}$ |  | 150 | ${ }^{\circ} \mathrm{C}$ |
| storage temperature |  | $\mathrm{T}_{\text {stg }}$ | -50 | 150 | ${ }^{\circ} \mathrm{C}$ |
| ambient temperature |  | $\mathrm{T}_{\text {amb }}$ | -20 | 120 | ${ }^{\circ} \mathrm{C}$ |
| ESD protection |  | $\mathrm{V}_{\text {ESD }}$ |  | 2 | kV |

## Characteristics

with Tamb $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$, unless specified otherwise

|  | Pin | Symbol | min | typ | max | unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| range for internal voltage <br> limitation | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\text {lim }}$ | 10.8 | 11.4 | 12 | V |
| quiescent current <br> consumption | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{I}_{\mathrm{CC}(\text { on }}$ |  | 1.25 | 1.5 | mA |
| trigger repeat rate with <br> $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | TR | $\mathrm{t}_{\mathrm{TRW}}$ | 900 | 1000 | 1100 | $\mu \mathrm{~s}$ |
| output pulse current <br> on $10 \Omega$ | TR | $\mathrm{I}_{\text {TRM }}$ | 400 | 650 | 850 | mA |
| output pulse width with <br> 90\% amplitude | TR | $\mathrm{t}_{\mathrm{TR}}$ | 0.6 | 0.9 | 1.5 | $\mu \mathrm{~s}$ |
| saturation voltage of <br> turn-off transistor <br> with I $=450$ mA | TR | $\mathrm{V}_{\text {TRsat }}$ |  | 380 | 500 | mV |
| saturation voltage of <br> switching output | S | $\mathrm{V}_{\text {Ssat }}$ |  | 0.2 | 0.45 | V |
| response level of error <br> voltage | EI | $\mathrm{K}_{\mathrm{OL}}$ | 3.60 | 3.75 | 3.90 | V |
| switching point of <br> overtemperature turn-off | $\mathrm{T}_{\mathrm{S}}$ | 95 | 105 | 115 | ${ }^{\circ} \mathrm{C}$ |  |
| switching range to indicate <br> a lamp as removed | LW | $\mathrm{V}_{\mathrm{LE}}$ |  |  |  | 3.25 |
| switching range to indicate <br> a lamp as applied | LW | $\mathrm{V}_{\mathrm{LV}}$ | 4.25 | V |  |  |


| Parameter | Condition | Value | Unit |
| :--- | :--- | :---: | :---: |
| Threshold for connecting the trigger pulses during <br> build-up phase | $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | 7 | V |
| Threshold for release of the internal reset | $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | 8 | V |
| Threshold for switching-off the control of the turn-off <br> transistor with set error memory | $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | 6 | V |
| Delay of response with error detection | $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | 1 | s |
| Duration for activation switching output | $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | 1 | s |
| Duration needed for rating at least 4 pulse-shaped <br> distortions or a static error signal with twice <br> interrogation within delay time 1 sec | $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | 840 | $\mu \mathrm{~s}$ |
| Control current of the turn-off transistor | $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | 10 | mA |
| Temperature hysteresis for re-ignition after <br> overtemperature switch-off ( pin TM is connected to <br> ground ) | $\mathrm{C}_{\text {Clock }}=82 \mathrm{pF}$ | 10 | ${ }^{\circ} \mathrm{C}$ |




Static overload threshold $\mathbf{V}_{\text {CC }}=10 \mathrm{~V}$


Trigger current at 10
vs. temperature, $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$


Timer output saturation voltage at 1 mA
$V_{\text {CC }}=10 \mathrm{~V}$


Trigger pulse width ( $\mathbf{9 0 \%}$ amplitude)
vs. temperature, $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$

Principle Circuit Diagram


## Application Circuit Diagram



## Package Dimension

## N SUFFIX PLASTIC DIP

(MS - 001BA)


| $\Phi 0.25(0.010)(M)$ | T |
| :--- | :--- |

## NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.


|  | Dimension, mm |  |
| :---: | :---: | :---: |
| Symbol | MIN | MAX |
| $\mathbf{A}$ | 8.51 | 10.16 |
| $\mathbf{B}$ | 6.1 | 7.11 |
| $\mathbf{C}$ |  | 5.33 |
| $\mathbf{D}$ | 0.36 | 0.56 |
| $\mathbf{F}$ | 1.14 | 1.78 |
| $\mathbf{G}$ | 2.54 |  |
| $\mathbf{H}$ | 7.62 |  |
| $\mathbf{J}$ | $0^{\circ}$ | $10^{\circ}$ |
| $\mathbf{K}$ | 2.92 | 3.81 |
| $\mathbf{L}$ | 7.62 | 8.26 |
| $\mathbf{M}$ | 0.2 | 0.36 |
| $\mathbf{N}$ | 0.38 |  |

