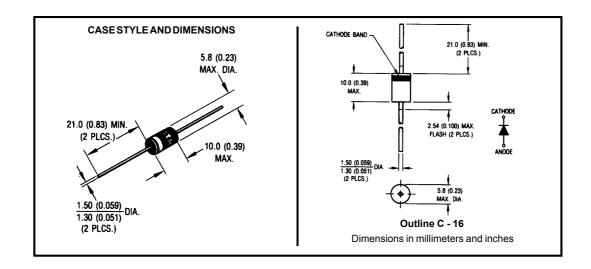
International Rectifier

1N5820

SCHOTTKY RECTIFIER

3.0 Amp


Major Ratings and Characteristics

Characteristics	1N5820	Units
I _{F(AV)} Rectangular waveform	3.0	Α
V _{RRM}	20	V
I _{FSM} @tp=5µssine	450	Α
V _F @3Apk,T _J =25°C	0.475	V
T _J	- 65 to 150	°C

Description/Features

The 1N5820 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- Low profile, axial leaded outline
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

Partnumber	1N5820	
V _R Max. DC Reverse Voltage (V)	20	
V _{RWM} Max. Working Peak Reverse Voltage (V)	20	

Absolute Maximum Ratings

	Parameters	1N5820	Units	Conditions	
I _{F(AV)}	Max.AverageForwardCurrent	3.0	Α	50%dutycycle@T _L =114°C,rectangularwaveform	
` ′				With cooling fins	
I _{FSM}	Max.PeakOneCycleNon-Repetitive	450	۸	5μs Sine or 3μs Rect. pulse	Following any rated
	SurgeCurrent,@T _J =25°C	90	Α	10ms Sine or 6ms Rect. pulse	load condition and with rated V _{RRM} applied

Electrical Specifications

	<u> </u>					
	Parameters	Тур.	Max.	Units	Conditio	ns
V _{FM}	Max. Forward Voltage Drop (1)	0.41	0.475	V	@ 3A	T = 25 °C
		0.49	0.85	V	@ 9.4A	T _J = 25 °C
I _{RM}	Max.ReverseLeakageCurrent (1)	0.05	2.0	mA	T _J = 25 °C	V _P = rated V _P
		8.1	20	mA	T _J = 100 °C	V _R - rated V _R
C _T	Typical Junction Capacitance	350	-	pF	V _R = 5V _{DC} (test signal range 100kHz to	
					1Mhz), @ 25	°C
L _S	Typical Series Inductance	9.0	-	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	-	10000	V/ µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	1N5820	Units	Conditions
T _J	Max.JunctionTemperatureRange (2)	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-65 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead	34	°C/W	With fin 20x20 (0.79x0.79) 1.0 thick
R _{thJA}	Max.ThermalResistanceJunction toAmbient	80	°C/W	DC operation, without cooling fin
Wt	Approximate Weight	1.2(0.042)	gr(oz)	
	Case Style	C-16	6	

 $\frac{\text{(2)}\,\text{dPtot}}{\text{dTj}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

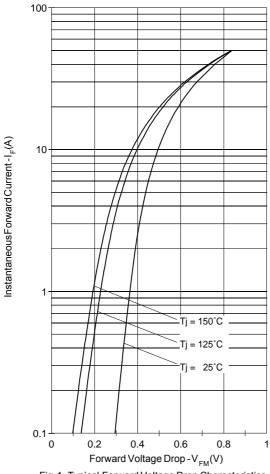


Fig. 1-Typical Forward Voltage Drop Characteristics

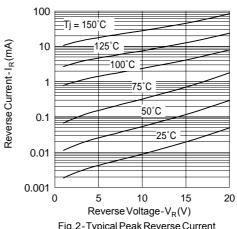


Fig.2-Typical Peak Reverse Current Vs. Reverse Voltage

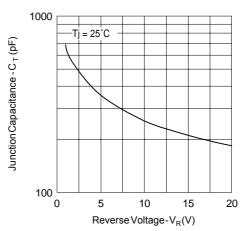


Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

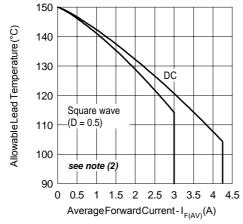


Fig.4-Maximum Average Forward Current Vs. Allowable Lead Temperature

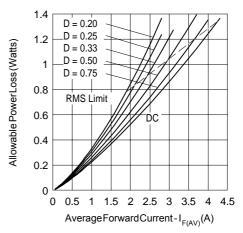


Fig. 5-Maximum Average Forward Dissipation Vs. Average Forward Current

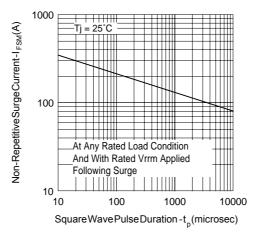


Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$

Marking & Identification

Ordering Information

Each device has marking and identification on two rows.

- The first row designates the device as manufactured by International Rectifier as indicated by the letters "IR", then Part Number.
- -The second row shows the data code: Year and Week.

See below marking diagram.

FIRST ROW

IR 1N5820

SECOND ROW

Date Code YY WW

IR1N5820 TR - TAPE AND REEL

WHENORDERING, INDICATE THE PARTNUMBER AND THE QUANTITY (IN MULTIPLES OF 1200 PIECES).

EXAMPLE: IR1N5820 TR - 2400 PIECES

IR1N5820 SERIES - BULK QUANTITIES

WHENORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (INMULTIPLE OF 500 PIECES)

EXAMPLE: IR1N5820 - 1000 PIECES

Data and specifications subject to change without notice.
This product has been designed for Industrial Level.
Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

Visit us at www.irf.com for sales contact information. 02/02