INTEGRATED CIRCUITS

Product data

File under Integrated Circuits — ICL03

2002 Feb 18

Philips Semiconductors

Product data

CBT3245A

FEATURES

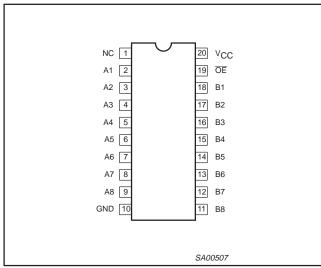
- Standard '245-type pinout
- 5 Ω switch connection between two ports
- TTL compatible control input levels
- Package options include plastic small outline (D), shrink small outline (DB), thin shrink small outline (TSSOP)
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection exceeds 2000 V HBM per JESD22-A114, 150 V MM per JESD22-A115 and 1000 V CDM per JESD22-C101

DESCRIPTION

The CBT3245A provides eight bits of high-speed TTL-compatible bus switching in a standard '245 device pinout. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The CBT3245A device is organized as one 8-bit switch. When enable (\overline{OE}) is low, the switch is on and port A is connected to port B. When \overline{OE} is high, the switch is open and a high-impedance state exists between the two ports.

The CBT3245A is characterized for operation from -40 to 85 °C.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25 °C; GND = 0 V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay An to Yn	C _L = 50 pF; V _{CC} = 5 V	250	ps
C _{IO(OFF)}	Pin capacitance (OFF state)	$V_{O} = 3 V \text{ or } 0 V$	6.6	pF
I _{CC}	Quiescent supply current	V_{CC} =5.5 V; I_{O} = 0; V_{I} = V_{CC} or GND	1	μΑ

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DWG NUMBER
20-Pin Plastic TSSOP	–40 to 85 °C	CBT3245APW	SOT360-1
20-Pin Plastic SSOP	–40 to 85 °C	CBT3245ADB	SOT339-1
20-Pin Plastic SOP	–40 to 85 °C	CBT3245AD	SOT163-1

PIN CONFIGURATION



PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	NC	No internal connection
19	OE Output enable input	
2, 3, 4, 5, 6, 7, 8, 9	A1–A8	Inputs
18, 17, 16, 15, 14, 13, 12, 11	B1–B8 Outputs	
10	GND	Ground (0V)
20	V _{CC}	Positive supply voltage

CBT3245A

LOGIC SYMBOL

FUNCTION TABLE

INPUT	INPUTS/OUTPUTS		
OE	A, B		
L	A = B		
н	Z		

H = High voltage level

L = Low voltage level

Z = High impedance "off" state

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to +7.0	V	
I _{IK}	DC input diode current	V ₁ < 0	-50	mA	
VI	DC input voltage ³		-0.5 to +7.0	V	
I _{OK}	DC output diode current	V _O < 0	-50	mA	
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +7	V	
I _{OUT}	DC output current	output in Low state	128	mA	
T _{stg}	Storage temperature range		-65 to 150	°C	

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.
The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
	FARAMETER	Min	Max	UNIT
V _{CC}	DC supply voltage	4.0	5.5	V
V _{IH}	High-level input voltage	2.0	_	V
V _{IL}	Low-level Input voltage	—	0.8	V
T _{amb}	Operating free-air temperature range	-40	+85	°C

Product data

CBT3245A

DC ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER		TEST CONDITIONS	T _{amb} = −40 to +85 °C			
			Min	Typ ¹	Max	1
V _{IK}	Input clamp voltage	$V_{CC} = 4.5 \text{ V}; \text{ I}_{\text{I}} = -18 \text{ mA}$	—	—	-1.2	V
lı	Input leakage current	$V_{CC} = 5.5 \text{ V}; \text{ V}_{I} = \text{GND or } 5.5 \text{ V}$	—	_	±5	μA
Icc	Quiescent supply current	V_{CC} = 5.5 V; I_O = 0, V_I = V_{CC} or GND	—	1	3	μΑ
Δl _{CC}	Additional supply current per input pin ²	V_{CC} = 5.5 V, one input at 3.4 V, other inputs at V_{CC} or GND	_	-	3.5	mA
Cl	Control pins	V_{I} = 3 V or 0, \overline{OE} = V_{CC}	—	3.2	_	pF
C _{IO(OFF)}	Pin capacitance (OFF state)	V _O = 3 V or 0	_	6.6	_	pF
		$V_{CC} = 4.5 \text{ V}; \text{ V}_1 = 0 \text{ V}; \text{ I}_1 = 64 \text{ mA}$	-	5	7	
r _{on} ³	On-resistance	V _{CC} = 4.5 V; V ₁ = 0 V; I ₁ = 30 mA	—	5	7	Ω
		$V_{CC} = 4.5 \text{ V}; \text{ V}_1 = 2.4 \text{ V}; \text{ I}_I = 15 \text{ mA}$	—	10	15]

NOTES:

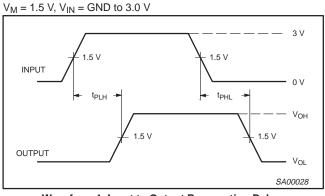
1. All typical values are at V_{CC} = 5 V, TA = 25 $^\circ\text{C}$

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND
Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals.

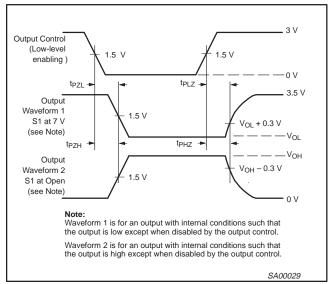
AC CHARACTERISTICS

 $GND = 0 V; t_{R}; C_{L} = 50 pF$

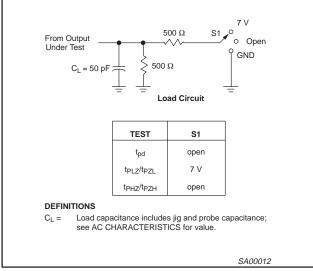
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	СВТЗ		
SYMBOL				T _{amb} = −40 to +85 °C V _{CC} = +5.0 V ±0.5 V		UNIT
				Min	Max	
t _{pd}	Propagation delay ¹	A or B	B or A	—	0.25	ns
t _{en}	Output enable time to High and Low level	ŌĒ	A or B	1.0	5.9	ns
t _{dis}	Output disable time from High and Low level	ŌĒ	A or B	1.0	6.0	ns


NOTES:

1. This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF, when driven by an ideal voltage source (zero output impedance).

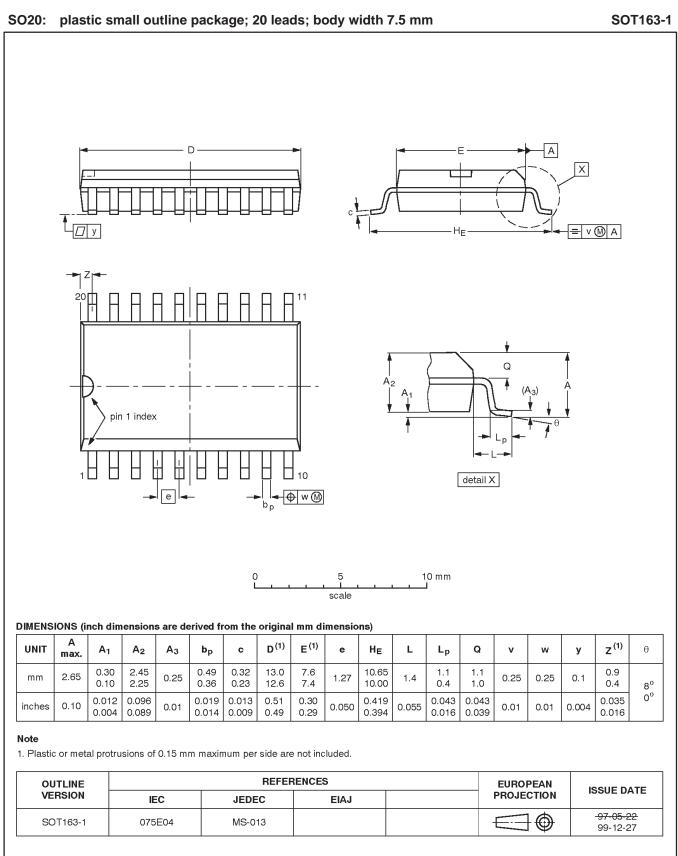

CBT3245A

Product data

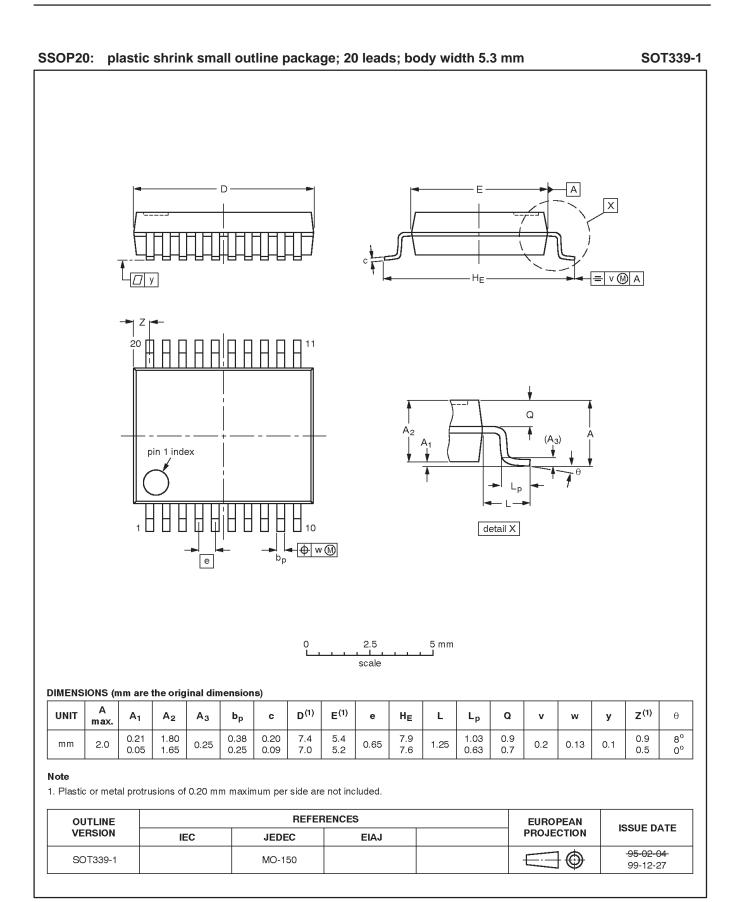

AC WAVEFORMS

Waveform 1. Input to Output Propagation Delays

Waveform 2. 3-State Output Enable and Disable Times



NOTES:


- 1. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- 2. The outputs are measured one at a time with one transition per measurement.

TEST CIRCUIT AND WAVEFORMS

CBT3245A

CBT3245A

CBT3245A

2002 Feb 18

CBT3245A

NOTES

CBT3245A

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 © Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 02-02

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 09462

Let's make things better.

