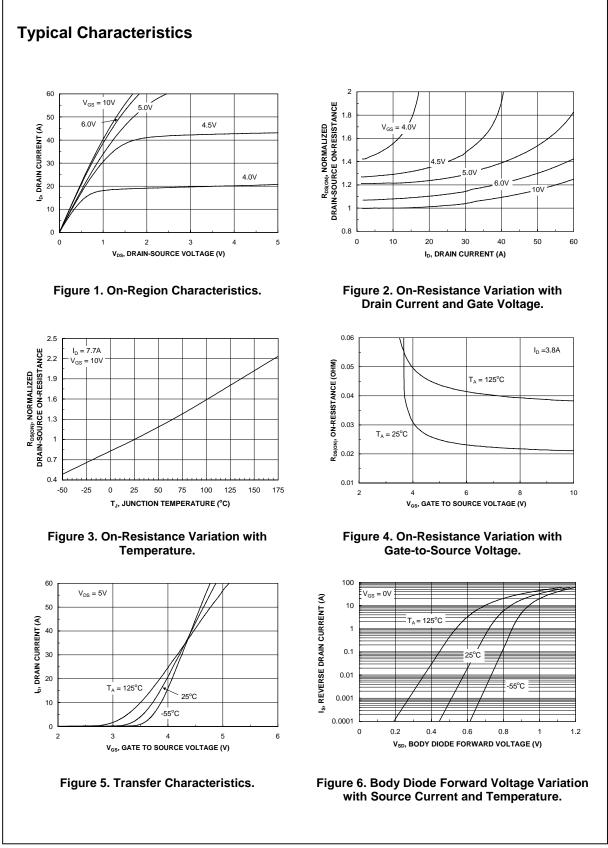


©2001 Fairchild Semiconductor Corporation

FDD3580/FDU3580 Rev A1(W)

FDD3580/FDU3580


	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (Note 2	2)		1		
W _{DSS}	Single Pulse Drain-Source	$V_{DD} = 40 \text{ V}, I_D = 7.7 \text{ A}$			245	mJ
AR	Avalanche Energy Maximum Drain-Source				7.7	A
AR	Avalanche Current				1.1	А
Off Chara	acteristics	•				
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS}=0~V, \qquad I_D=250~\mu A$	80			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		79		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 64 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			1	μA
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
	Gate–Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Chara	Acteristics (Note 2)	•				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	2.5	4	V
$\Delta V_{GS(th)}$ ΔT_{J}	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		-7		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 10 \text{ V}, I_D = 7.7 \text{ A}$		23	29	mΩ
	On-Resistance	$V_{GS} = 6 V$, $I_D = 7.2 A$		24	33	
1	On–State Drain Current		30	37	50	A
D(on)	Forward Transconductance	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{DS} = 10 \text{ V}, I_D = 7.7 \text{ A}$	30	28		S
9 _{FS}	Forward Transconductance	$v_{DS} = 10 v$, $I_D = 7.7 A$		20		3
	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V},$		1760		pF
						pF
	Output Capacitance	f = 1.0 MHz		144		•
	Output Capacitance Reverse Transfer Capacitance			144 72		pr pF
C _{rss}	Reverse Transfer Capacitance					•
C _{rss} Switching		$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A},$			23	•
C _{rss} Switching t _{d(on)}	Reverse Transfer Capacitance g Characteristics (Note 2)			72	23 16	pF
C _{rss} Switching t _{d(on)} t _r	Reverse Transfer Capacitance g Characteristics (Note 2) Turn–On Delay Time	$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A},$		72		pF ns
Crss Switching t _{d(an)} tr t _r	Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time	$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A},$		72 13 8	16	pF ns ns
Coss Crss Switching td(on) tr td(off) tf Qg	Reverse Transfer Capacitance g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Delay Time	$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 40 \text{ V}, I_D = 7.7 \text{ A},$		72 13 8 34	16 54	pF ns ns
Crss Switching t _{d(on)} t _r t _{d(off)} t _f	Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		72 13 8 34 16	16 54 29	pF ns ns ns
Crss Switching t _{d(on)} tr td(off) tr Qg	Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 40 \text{ V}, I_D = 7.7 \text{ A},$		72 13 8 34 16 35	16 54 29	pF ns ns ns nc
Crss Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 40 \text{ V}, I_D = 7.7 \text{ A}, \\ V_{GS} = 10 \text{ V},$		72 13 8 34 16 35 6.2	16 54 29	pF ns ns ns nc nC
Crss Switching t _{d(on)} tr t _{d(off)} tr Q _g Q _{gs} Q _{gs} Q _{gd} Drain–So	Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Didde Characteristics a	$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 40 \text{ V}, I_D = 7.7 \text{ A}, \\ V_{GS} = 10 \text{ V}, \\ \text{and Maximum Ratings}$		72 13 8 34 16 35 6.2	16 54 29 49	pF ns ns ns nC nC
Crss Switching id(on) ir id(off) id Qg Qgs Qgd	Reverse Transfer Capacitance g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 40 \text{ V}, I_D = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = 40 \text{ V}, I_D = 7.7 \text{ A}, \\ V_{GS} = 10 \text{ V}, \\ \text{and Maximum Ratings}$		72 13 8 34 16 35 6.2	16 54 29	pF ns ns ns nc nC

FDD3580/FDU3580

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%

FDD3580/FDU3580 Rev. A1(W)

FDD3580/FDU3580

FDD3580/FDU3580

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production