Preferred Device

Triacs

Silicon Bidirectional Thyristors

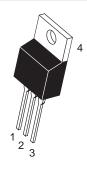
Designed primarily for full-wave ac control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

- Blocking Voltage to 800 Volts
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Four Modes
- Device Marking: Logo, Device Type, e.g., MAC212A8, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to +125°C, Sine Wave 50 to 60 Hz, Gate Open) MAC212A8 MAC212A10	VDRM, VRRM	600 800	Volts
On-State RMS Current (T _C = +85°C) Full Cycle Sine Wave 50 to 60 Hz	IT(RMS)	12	Amp
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _C = +25°C) Preceded and followed by rated current	ITSM	100	Amp
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	40	A ² s
Peak Gate Power (T _C = +85°C, Pulse Width = 10 μs)	Рдм	20	Watts
Average Gate Power (T _C = +85°C, t = 8.3 ms)	PG(AV)	0.35	Watt
Peak Gate Current (T _C = +85°C, Pulse Width = 10 μs)	I _{GM}	2.0	Amp
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

⁽¹⁾ V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.



ON Semiconductor

http://onsemi.com

TRIACS 12 AMPERES RMS 600 thru 800 VOLTS

TO-220AB CASE 221A STYLE 4

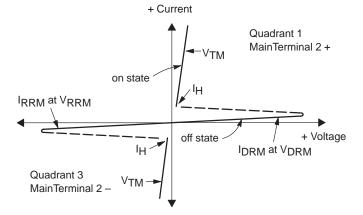
PIN ASSIGNMENT		
1	Main Terminal 1	
2	Main Terminal 2	
3	Gate	
4	Main Terminal 2	

ORDERING INFORMATION

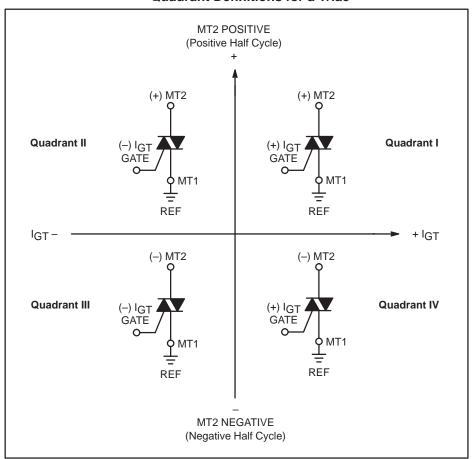
Device	Package	Shipping
MAC212A8	TO220AB	500/Box
MAC212A10	TO220AB	500/Box

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	R _θ JC R _θ JA	2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	'			•	•
Peak Repetitive Blocking Current (V_D = Rated V_{DRM} , V_{RRM} ; Gate Open) T_J = 25°C T_J = +125°C	I _{DRM} , I _{RRM}	_	_	10 2.0	μA mA
ON CHARACTERISTICS	•		•		
Peak On-State Voltage $I_{TM} = \pm 17$ A Peak; Pulse Width = 1 to 2 ms, Duty Cycle $\leq 2\%$	Vтм	<u> </u>	1.3	1.75	Volts
Gate Trigger Current (Continuous dc) (Main Terminal Voltage = 12 Vdc, R _L = 100 Ohms) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)	^I GT	_ _ _ _	12 12 20 35	50 50 50 75	mA
Gate Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 Vdc, R _L = 100 Ohms) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)	VGT	_ _ _ _	0.9 0.9 1.1 1.4	2.0 2.0 2.0 2.5	Volts
Gate Non–Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 V, R_L = 100 Ω , T_J = +125°C) All Four Quadrants	V _{GD}	0.2	_	_	Volts
Holding Current (Main Terminal Voltage = 12 Vdc, Gate Open, Initiating Current = ± 200 mA)	lн	_	6.0	50	mA
Turn-On Time $(V_D = Rated \ V_{DRM}, \ I_{TM} = 17 \ A, \ I_{GT} = 120 \ mA,$ Rise Time = 0.1 μ s, Pulse Width = 2 μ s)	tgt	_	1.5	_	μs
DYNAMIC CHARACTERISTICS	•	•	•	•	
Critical Rate of Rise of Commutation Voltage (V_D = Rated V_{DRM} , I_{TM} = 17 A, Commutating di/dt = 6.1 A/ms, Gate Unenergized, T_C = +85°C)	dv/dt _(C)	_	5.0	_	V/μs
Critical Rate of Rise of Off-State Voltage (V_D = Rated V_{DRM} , Exponential Voltage Rise, Gate Open, T_C = +85°C)	dv/dt	_	100	_	V/μs

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
VDRM	Peak Repetitive Forward Off State Voltage
IDRM	Peak Forward Blocking Current
VRRM	Peak Repetitive Reverse Off State Voltage
IRRM	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
lΗ	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

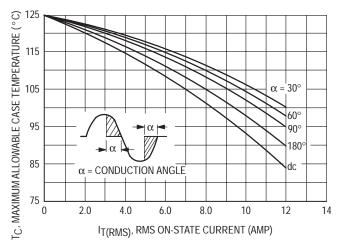


Figure 1. Current Derating

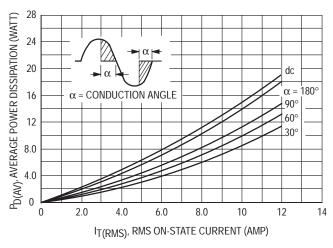


Figure 2. Power Dissipation

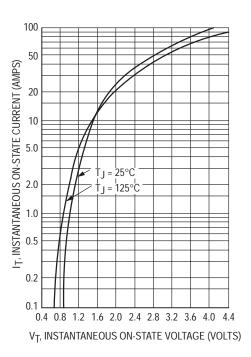


Figure 3. Maximum On–State Voltage Characteristics

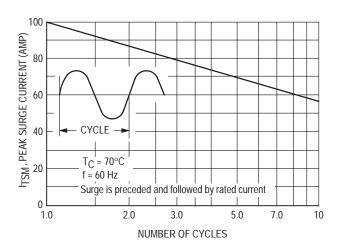
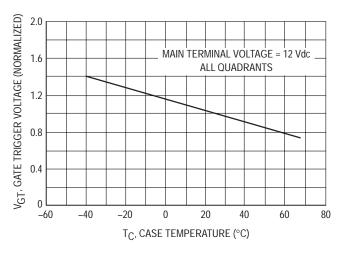
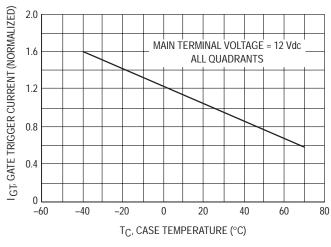
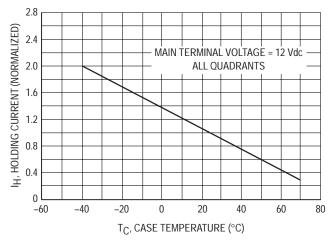





Figure 4. Maximum Non-Repetitive Surge Current

Figure 5. Typical Gate Trigger Voltage

Figure 6. Typical Gate Trigger Current

Figure 7. Typical Holding Current

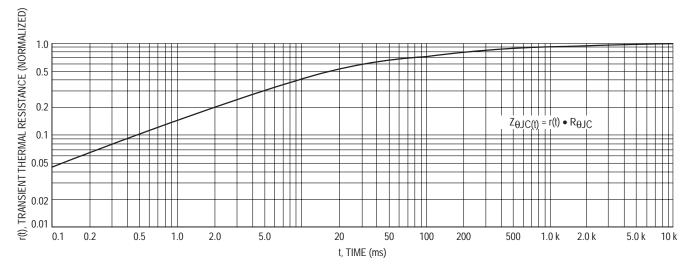
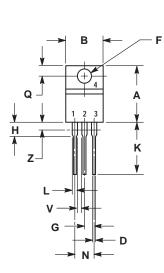
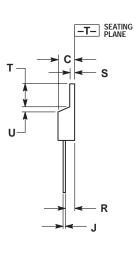




Figure 8. Thermal Response

PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 ISSUE Z

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

- STYLE 4:
 PIN 1. MAIN TERMINAL 1
 2. MAIN TERMINAL 2
 3. GATE
 4. MAIN TERMINAL 2

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.