Preferred Device

Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Available in Surface Mount Lead Form Case 369A
- Device Marking: Logo, Device Type, e.g., MCR8DCM, Date Code

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

WAXIMOW IXATINGS $(1) = 25$ C unless otherwise hoted)					
Rating	Symbol	Value	Unit		
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open)	^V drm, ^V rrm		Volts		
MCR8DCM MCR8DCN		600 800			
On–State RMS Current (180° Conduction Angles; T _C = 105°C)	I _{T(RMS)}	8.0	Amps		
Average On–State Current (180° Conduction Angles; T _C = 105°C)	IT(AV)	5.1	Amps		
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 125°C)	ITSM	80	Amps		
Circuit Fusing Consideration (t = 8.3 msec)	l ² t	26	A ² sec		
Forward Peak Gate Power (Pulse Width \leq 1.0 μ sec, T _C = 105°C)	PGM	5.0	Watts		
Forward Average Gate Power (t = 8.3 msec, T _C = 105°C)	PG(AV)	0.5	Watts		
Forward Peak Gate Current (Pulse Width ≤ 1.0 μsec, T _C = 105°C)	IGM	2.0	Amps		
Operating Junction Temperature Range	ТJ	-40 to 125	°C		
Storage Temperature Range	T _{stg}	-40 to 150	°C		

(1) V_{DRM}, V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.

ON Semiconductor

http://onsemi.com

SCRs 8 AMPERES RMS 600 thru 800 VOLTS

D-PAK

CASE 369A STYLE 4

PIN ASSIGNMENT				
1 Cathode				
2	2 Anode			
3	Gate			
4	Anode			

ORDERING INFORMATION

Device	Package	Shipping
MCR8DCMT4	DPAK 369A	16mm Tape and Reel (2.5K/Reel)
MCR8DCNT4	DPAK 369A	16mm Tape and Reel (2.5K/Reel)

Preferred devices are recommended choices for future use and best overall value.

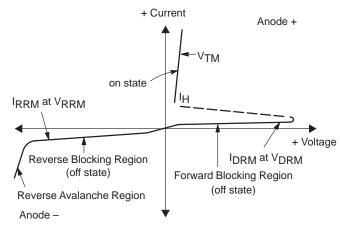
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance — Junction to Case — Junction to Ambient — Junction to Ambient ⁽¹⁾	R _θ JC R _θ JA R _θ JA	2.2 88 80	°C/W
Maximum Lead Temperature for Soldering Purposes(2)	Т	260	°C

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS	•		•	•	
$ \begin{array}{l} \mbox{Peak Repetitive Forward or Peak Repetitive Reverse Blocking Current} \\ (V_{AK} = Rated \ V_{DRM} \ or \ V_{RRM}, \ Gate \ Open) \\ T_J = 25^{\circ}C \\ T_J = 125^{\circ}C \end{array} $	IDRM, IRRM			0.01 5.0	mA
ON CHARACTERISTICS					
Peak On–State Voltage ⁽³⁾ (I _{TM} = 16 A)	V _{TM}	_	1.4	1.8	Volts
Gate Trigger Current (Continuous dc) $(V_{AK} = 12 \text{ V}, \text{ R}_{L} = 100 \Omega, \text{ T}_{J} = 25^{\circ}\text{C})$ $(\text{T}_{J} = -40^{\circ}\text{C})$	IGT	2.0	7.0	15 30	mA
Gate Trigger Voltage (Continuous dc) $(V_{AK} = 12 \text{ V}, \text{ R}_{L} = 100 \Omega, \text{ T}_{J} = 25^{\circ}\text{C})$ $(\text{T}_{J} = -40^{\circ}\text{C})$ $(\text{T}_{J} = 125^{\circ}\text{C})$	VGT	0.5 — 0.2	0.65 — —	1.0 2.0 —	Volts
	IH III	4.0	22 —	30 60	mA
Latching Current (V _{AK} = 12 V, I _G = 15 mA, T _J = 25°C) (V _{AK} = 12 V, I _G = 30 mA, T _J = -40° C)	ι	4.0	22 —	30 60	mA
DYNAMIC CHARACTERISTICS					
Critical Rate of Rise of Off–State Voltage	dv/dt				V/µs

Critical Rate of Rise of Off–State Voltage	dv/dt				V/μs	L
(V _{AK} = Rated V _{DRM} , Exponential Waveform, Gate Open, T_J = 125°C)		50	200	—		


(1) Surface mounted on minimum recommended pad size.

(2) 1/8" from case for 10 seconds.

(3) Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.

Voltage Current Characteristic of SCR

Symbol	Parameter
VDRM	Peak Repetitive Off State Forward Voltage
IDRM	Peak Forward Blocking Current
VRRM	Peak Repetitive Off State Reverse Voltage
IRRM	Peak Reverse Blocking Current
VTM	Peak On State Voltage
Ι _Η	Holding Current

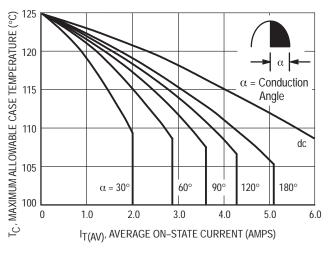


Figure 1. Average Current Derating

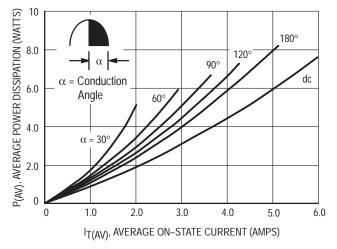


Figure 2. On-State Power Dissipation

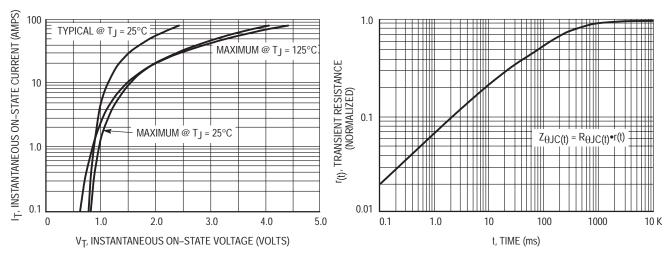


Figure 3. On–State Characteristics

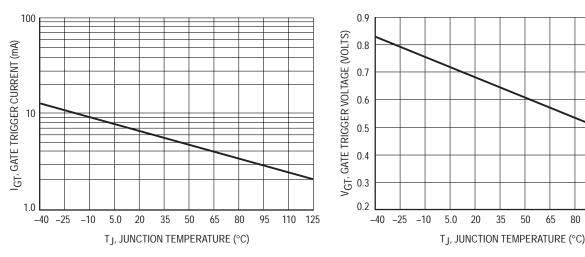


Figure 5. Typical Gate Trigger Current versus **Junction Temperature**

Figure 6. Typical Gate Trigger Voltage versus **Junction Temperature**

50 65 95

80

110 125

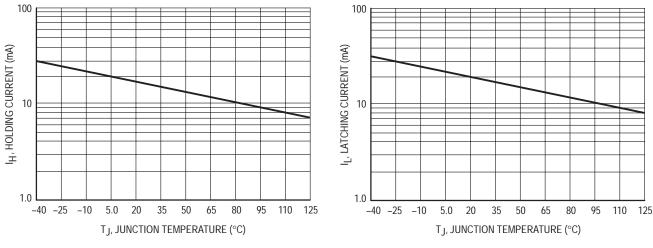
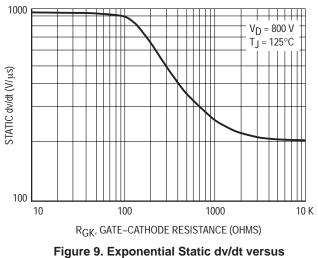
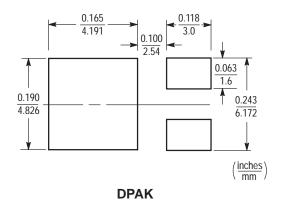
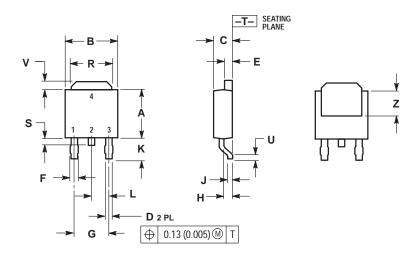



Figure 7. Typical Holding Current versus **Junction Temperature**



Gate-Cathode Resistance

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS


Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

PACKAGE DIMENSIONS

D-PAK CASE 369A-13 ISSUE Z

NOT	LJ.								
1.	DIMENSIONING AND TOLERANCING PER ANSI								
	Y14.5	VI, 1982.							
2.	CONT	ROLLING	DIMENSI	ON: INCH	ł.				
		INC	HES	MILLIN	IETERS				
	dim min max min max								
	Α	0.235	0.250	5.97	6.35				
	B 0.250 0.265 6.35 6.73								

DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Ε	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.180	BSC	4.58	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090	BSC	2.29	BSC
R	0.175	0.215	4.45	5.46
S	0.020	0.050	0.51	1.27
U	0.020		0.51	
V	0.030	0.050	0.77	1.27
Z	0.138		3.51	

NOTES:

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.