Ultra Fast Precision Comparator - ### **FEATURES** - Ultra Fast (10ns typ) - Operates Off Single + 5V Supply, or ± 5V - Complementary Output to TTL - Low Offset Voltage - No Minimum Input Slew Rate Requirement - No Power Supply Current Spiking - Output Latch Capability ### **APPLICATIONS** - High Speed A to D Converters - High Speed Sampling Circuits - Line Receiver - Extended Range V to F Converters - Fast Pulse Height/Width Discriminators ## DESCRIPTION The LT1016 is an ultra fast (10ns) comparator specifically designed to interface directly to TTL logic while operating off either a dual \pm 5V supply or a single + 5V supply. Tight offset voltage specifications and high gain allow the LT1016 to be used in precision applications. Matched complementary outputs further extend the versatility of this new comparator. A unique output stage is featured on the LT1016. It provides active drive in both directions for maximum speed into TTL logic or passive loads, yet does not exhibit the large current spikes normally found in "totem pole" output stages. This eliminates the need for a minimum input slew rate typical of other very fast comparators. The ability of the LT1016 to remain stable with the outputs in the active region greatly reduces the problem of output "glitching" when the input signal is slow moving or is low level. The LT1016 has a true latch pin for retaining input data at the outputs. The outputs will remain latched as long as the latch pin is held high. Quiescent negative power supply current is only 3mA — about ten times lower than competitive units. This reduces die temperature and allows the negative supply pin to be driven from virtually any supply voltage with a simple resistive divider. Device performance is not affected by variations in negative supply voltage. #### 10-25MHz Crystal Oscillator #### Response Time ## **ABSOLUTE MAXIMUM RATINGS** # PACKAGE/ORDER INFORMATION | Positive Supply Voltage (Note 4) | 7V | |---|---------------------| | Negative Supply Voltage | | | Differential Input Voltage | | | Input Voltage (Either Input) | . Equal to Supplies | | Latch Pin Voltage | Equal to Supplies | | Output Current (Continuous) | ±20mA | | Operating Temperature Range | 0°C to 70°C | | Storage Temperature Range | 65°C to 150°C | | Lead Temperature (Soldering, 10 sec.) . | 300°C | ### **ELECTRICAL CHARACTERISTICS** $V^+ = 5V$, $V^- = 5V$, $V_{OUT}(Q) = 1.4V$, $V_{LATCH} = 0V$, $T_A = 25$ °C, unless otherwise noted. | SYMBOL | PARAMETERS | CONDITIONS | | | MIN | LT1016C
TYP | MAX | UNITS | |----------------------------------|----------------------------|--|---|----|------------|----------------|------------|----------| | Vos | Input Offset Voltage | R _S ≤100Ω (Note 1) | | | | 1.0 | ±3
±3.5 | mV
mV | | AV | Input Offset Voltage Drift | | | - | ···- | 4 | ± 3.5 | μV/°C | | $\frac{\Delta V_{OS}}{\Delta T}$ | miput offset voltage bint | | | | | 7 | | μν, σ | | los | Input Offset Current | (Note 1) | | 1. | | 0.3
0.3 | 1
1.3 | μA
μA | | I _B | Input Bias Current | (Note 2) | | • | | 5 | 10
13 | μA
μA | | | Input Voltage Range | (Note 5) | | | -3.75 | | + 3.5 | V | | | | Single +5V Su | pply | • | + 1.25 | | + 3.5 | V | | CMRR | Common-Mode Rejection | $-3.75V \le V_{CM} \le +3.5V$ | | • | 80 | 96 | | dB | | PSRR | Supply Voltage Rejection | Positive Supply 4.6V ≤ V + ≤ 5.4V | | • | 60 | 75 | | dB | | | | Negative Supply 2V ≤ V ⁻ ≤ 7V | | • | 80 | 100 | | dB | | A _V | Small Signal Voltage Gain | 1V≤V _{OUT} ≤2V | | | 1400 | 3000 | | V/V | | V _{OH} | Output High Voltage | V ⁺ ≥4.6V, | I _{OUT} = 1mA
I _{OUT} = 10mA | • | 2.7
2.4 | 2.9
2.8 | | V | | V _{OL} | Output Low Voltage | | I _{SINK} = 4mA
I _{SINK} = 10mA | • | | 0.3
0.4 | 0.5 | V | | Ī ⁺ | Positive Supply Current | | | • | | 25 | 35 | mĀ | | 1- | Negative Supply Current | | | • | | 3 | 5 | mA | | V _{IH} | Latch Pin Hi Input Voltage | | | • | 2.0 | | | V | | V _{IL} | Latch Pin Lo Input Voltage | | | • | | | 0.8 | . V | | I _{IL} | Latch Pin Current | V _{LATCH} = 0V | | • | | | 500 | μА | ## **ELECTRICAL CHARACTERISTICS** $V^+ = 5V$, $V^- = 5V$, $V_{OUT}(Q) = 1.4V$, $V_{LATCH} = 0V$, $T_A = 25$ °C, unless otherwise noted. | SYMBOL
t _{PD} | PARAMETERS Propagation Delay (Note 3) | CONDITIONS | LT1016C
MIN TYP MAX | | | UNITS | | |---------------------------|---------------------------------------|--|------------------------|--|----|----------|----------| | | | $\Delta V_{IN} = 100 \text{mV}, 0D = 5 \text{mV}$ | • | | 10 | 14
16 | ns
ns | | | | $\Delta V_{1N} = 100 \text{mV}, 0D = 20 \text{mV}$ | • | | 9 | 12
15 | ns
ns | | Δt _{PD} | Differential Propagation
Delay | (Note 3) $\Delta V_{1N} = 100$ mV, $0D = 5$ mV | | | | 3 | ns | | | Latch Setup Time | | | | 2 | | ns | The denotes the specifications which apply over the full operating temperature range. **Note 1:** Input offset voltage is defined as the average of the two voltages measured by forcing first one output, then the other to 1.4V. Input offset current is defined in the same way. Note 2: Input bias current (I_B) is defined as the average of the two input currents. Note 3: Propagation delay is measured with the overdrive added to actual V_{OS} . Guaranteed but not tested. Note 4: Electrical specifications apply only up to 5.4V. Note 5: See text for discussion of input voltage range for supplies other than \pm 5V, or \pm 5V.