

April 1999 ADVANCE INFORMATION

FDD6030BL

N-Channel PowerTrench™ MOSFET

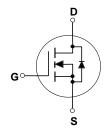
General Description

This N-Channel Logic level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the onstate resistance and yet maintain low gate charge for superior switching performance.

Applications

- DC/DC converter
- Motor drives

Features


• 35 A, 30 V.
$$R_{DS(ON)} = 0.018~\Omega~$$
 @ $V_{GS} = 10~V$
$$R_{DS(ON)} = 0.025~\Omega~$$
 @ $V_{GS} = 4.5~V.$

- Low gate charge.
- Fast switching speed.
- \bullet High performance trench technology for extremely low $R_{\scriptscriptstyle DS(ON)}.$

TO-252

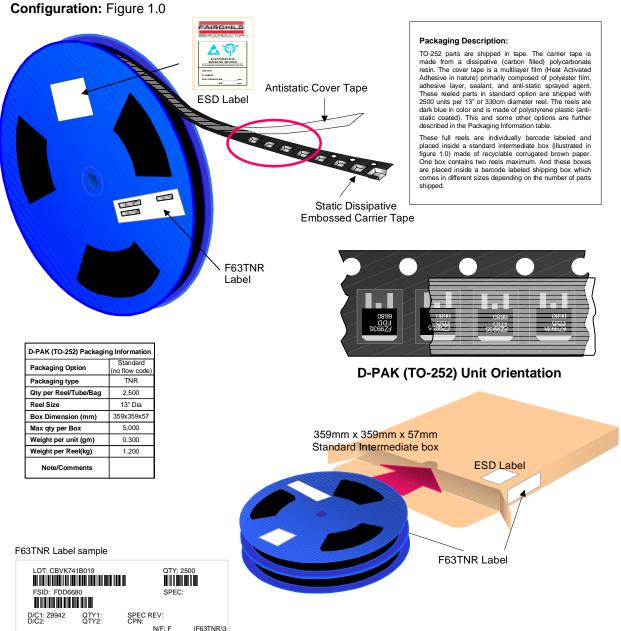
Absolute Maximum Ratings Tc=25°C unless otherwise noted

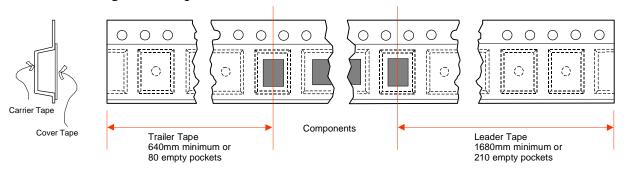
Symbol	Parameter	Ratings	Units	
V_{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		<u>±</u> 20	V
I _D	Maximum Drain Current -Continuous	(Note 1)	35	А
		(Note 1a)	9	
	Maximum Drain Current -Pulsed		100	
P _D	Maximum Power Dissipation @ T _C = 25°C	(Note 1)	44	W
	$T_A = 25^{\circ}C$	(Note 1a)	2.8	
	$T_A = 25^{\circ}C$	(Note 1b)	1.3	
T _J , T _{sta}	Operating and Storage Junction Temperature	e Range	-55 to +150	°C

Package Marking and Ordering Information						
Device Marking	Device	Reel Size	Tape width	Quantity		
FDD6030BL	FDD6030BL	13"	16mm	2500		

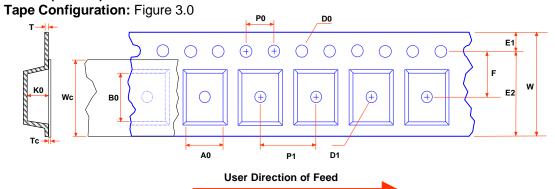
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
055.01	IADA OTEDIOTICO					
BV _{DSS}	ARACTERISTICS Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	30			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	30		1	μA
I _{GSSF}	Gate-Body Leakage, Forward	$V_{DS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nΑ
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
00010	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	163 = 1, 153 1				117 (
	ARACTERISTICS (Note 2) Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1		3	V
ON CHA	ARACTERISTICS (Note 2)	, 10	1			
ON CHA	ARACTERISTICS (Note 2) Gate Threshold Voltage Static Drain-Source	$V_{DS} = V_{GS}, \ I_D = 250 \ \mu A$ $V_{GS} = 10 \ V, \ I_D = 9 \ A$ $V_{GS} = 4.5 \ V, \ I_D = 7.5 \ A$		<u> </u>	3 0.018	V
ON CHA	ARACTERISTICS (Note 2) Gate Threshold Voltage Static Drain-Source On-Resistance	$\begin{aligned} &V_{DS} = V_{GS}, \ I_D = 250 \ \mu A \\ &V_{GS} = 10 \ V, \ I_D = 9 \ A \\ &V_{GS} = 4.5 \ V, \ I_D = 7.5 \ A \end{aligned}$ RISTICS AND MAXIMUM F			3 0.018	V

Notes:


^{1.} $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the drain tab. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

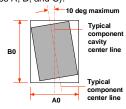

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

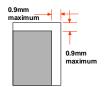

D-PAK (TO-252) Packaging

TO-252 (D-PAK) Tape Leader and Trailer Configuration: Figure 2.0

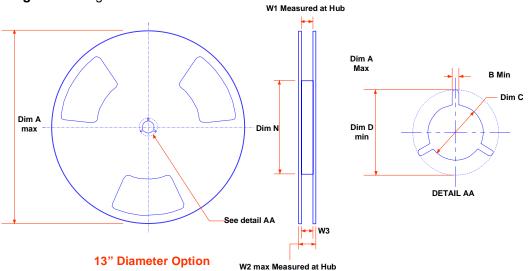
D-PAK (TO-252) Embossed Carrier



Dimensions are in millimeter														
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
TO252 (24mm)	6.90 +/-0.10	10.50 +/-0.10	16.0 +/-0.3	1.55 +/-0.05	1.5 +/-0.10	1.75 +/-0.10	14.25 min	7.50 +/-0.10	8.0 +/-0.1	4.0 +/-0.1	2.65 +/-0.10	0.30 +/-0.05	13.0 +/-0.3	0.06 +/-0.02


Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation



Sketch B (Top View)
Component Rotation

Sketch C (Top View)
Component lateral movement

D-PAK (TO-252) Reel Configuration: Figure 4.0

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
164mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.646 +0.078/-0.000 16.4 +2/0	0.882 22.4	0.626 - 0.764 15.9 - 19.4

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT $^{\text{TM}}$ QFET $^{\text{TM}}$ FACT Quiet Series $^{\text{TM}}$ QS $^{\text{TM}}$

 $\begin{array}{lll} \mathsf{FAST}^{\circledast} & \mathsf{Quiet}\,\mathsf{Series^{\mathsf{TM}}} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}3} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}6} \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.