Preliminary

General Description

The MSU30x2 is a monolithic talking microcomputer that can memorize voice up to 60/90/120 seconds using MOSEL qualified coding method(MPCM). It's an integration of traditional 4-bit microcomputer and voice chip with minimal external components. LCD driver and miscellaneous interface are provided for versatile applications. With more than bit 10 K ROM/RAM inside, this chip meets every intelligent novelty. Customer requested function and voice data will be built in by changing masks during fabrication.

Hardware Features

- Low current consumption
- Maximal function with minimal cost
- Current output could drive 8 ohm speaker with a transistor, Vout could drive buzzer directly.
- The voice content is stored up to 120 seconds at 6 KHz (B0000h) and can be separated to 256 sections.
- Duration of each section can be different and is multiples of 100 h .
- Duration of section with appended memory-less mute is up to 40 seconds (100000h).
- Each trigger can access a sentence, up to 256 sentences could be access. 1024 entry count are provided.
- Working at 2.4 V through 6.0 V
- Precise voice sample rate 8 KHz is provided.
- Auto ramp up and ramp down.
- Halt mode is provided.

Very low current consumption at Halt mode.
■ LCD driver provided, can drive up to 75 segments

- Built-In clock generator
- Built-In doubler, halver, tripler
- Internal program ROM : 1024×15 bits;
- Internal program RAM : 64×4 bits
- Internal stack RAM: 4x10 bits.
- Two 4-bit input ports
- Two 4-bit input/output ports
- One 4-bit output port

Software Features

- 76 instructions, in 39 mnemonics
- 4-level subroutine nesting (also used for interrupt)

■ Two external factors (INT, S\&M) for interrupt

- Two internal factors (timer, divider) for interrupt

Sample Applications

\square handy game with LCD
- versatile timepiece with LCD
- talking timer with LCD
\square intelligent calculator with LCD
$\square_{\text {smart stationery with LCD }}$
- talking home electronics with LCD
■ talking education kit with LCD

MSM9068	Developing Card
MSM9088	Program code emulation board
MSM9018	120" Sound emulation board

$\begin{array}{ll}\text { MSM9088 } & \text { Program code emulation board } \\ \text { MSM9018 } & 120 " \text { Sound emulation board }\end{array}$ MSM9018 120 Sound emulation board

■either slow (by 15.625 ms) or fast (by 224.14 us) set time timer
■either fast system clock (Fosc) or slow system clock (Fosc / 2)
■either Rosc or 32768 Hz crystal to play voice
■LCD display frequency : (1) $128 \mathrm{~Hz} / 170.7 \mathrm{~Hz}$ (2) $64 \mathrm{~Hz} / 85.3 \mathrm{~Hz}(3) 32 \mathrm{~Hz} / 42.7 \mathrm{~Hz}$
■LCD driver : (1) static (2) $1 / 2$ bias $1 / 2$ duty (3) $1 / 2$ bias $1 / 3$ duty

Capacity of each device

	Device	Voice ROM Size	Word Count	Sentence Count	Entry Count	LCD segment	LCD	LCDB	LCDP
1	U3042	B0000hx5	256	256	1024	25×3	Yes	Yes	Yes
2	U3032	$81000 \mathrm{hx5}$	256	256	1024	25×3	Yes	Yes	Yes
3	U3022	$58000 h \times 5$	256	256	1024	25×3	Yes	Yes	Yes

Block Diagram

Signal Summary

dice Pad \#		Signal symbal		Active	I/O	Functions
63		Vdd1	1		Power	Positive power supply for CPU function block
64		Vreg	1		0	Voltage regulator
65, 66		CUP1,2	2		1	Voltage doubler capacitor
67		X1	1		1	Crystal Oscillator input, 32768 Hz
68		X2	1		0	Crystal Oscillator Output, 32768 Hz
69		COM1	1		0	Common plate for LCD panel
70, 1-24		SEG1-25	25		0	25 segment outputs for LCD panel
25, 26		COM3,2	2		0	Common plate for LCD panel
27		BAK	1		Power	Negative power supply
28, 29		Vss1,2	2		Power	BackUp negative power supply
30,31		S4,S3	2		1	One-way input port; note 1
32		LGT	1		0	Output port
33-36		IOA1-4	4		I/O	Bidirectional Input / output port
37		RES	1	H	1	System reset
38		NC2	1			No connection
39		NC3	1			No connection
40		Vdd2	1		Power	Positive supply for voice function block, internally connected to pad Vdd1
41		Rosc	1		1	Oscillator Resistor for voice function block
42		VssV	1		Power	Negative power supply for voice signal
43		Cout	1		0	Audio signal current output
44, 45		Vout1,2	2		0	Audio signal voltage output
46-48		IOB1,2,3	3		I/O	Bidirectional Input / Output port
49		NC1	1		I/O	No connection
50		IOB4	1			Bidirectional Input / Output port
51		VBZ/INT	1		I/O	Busy status output; internally connected to INT (interrupt request) pin of CPU
52-55		P1,2,3,4	4		0	One-way output port, 4 bits
56-59		M1,2,3,4	4		1	One-way input port; note 1
60		NC4	1		NC	No connection
61,62		S2,1	2		,	One-way input port, note 1

Note 1. with chatter removal time for either 8 ms (ph8) or 2 ms (ph6)

Signals Descriptions

Cout

Cout is tristate during standby.
Cout has zero current output when sound data is zero. Cout has full current output when sound data is the highest. Cout has half of full current output when sound is silence at middle data value. Cout has half of full current output when playing sound at appended memory-less mute.
The bypass Cout Resistor is used to bypass the audio output current from Cout. This bypassing extra current to ground gives a way to prevent the saturation of audio waveform amplified by transistor. This Resistance is 470 ohm typically. It always is not very small. Or user can let it open if the transistor has a fair beta value.
A transistor with beta value 150 is sufficient for typical applications. Larger beta value get larger sound but may have the amplified waveform saturated.

Vout1, Vout2

They are tristate during standby state.
These two pins can drive buzzer directly. The piezo buzzer used should have its resonant frequency at the center of your sound frequency domain or you are unable to play you sound good by this buzzer.
For instance, you have your sound spans over frequency from 100 Hz through 1 KHz . A buzzer with resonant frequency at 300 Hz will play this sound good. A buzzer with resonant frequency at 1 KHz will distort the sound very much because that most of the energy of the playback sound is unable to be played by this buzzer.
When using precise sample rate, these Vout 1 \& 2 do not work.

Terms

to be available

Absolute Maximum Rating (vdde=3.0V, Vss=Vssz=0.0V,V/sss=0.0V/-1.5v)

Symbol	Rating	Unit
Vss1	$1.2-1.8$	V
BAK	$0.0-0.6$	V
Vreg	$0.0-0.6$	V
CAP	Vreg-Vd	V
X 1	Vreg-Vdd	V
$\mathrm{S} 1,2,3,4$	Vss-Vdd	V
$\mathrm{M} 1,2,3,4$	Vss-Vdd	V
(IOA1,2,3,4)TG0,1,2,3	Vss-Vdd	V
IOB1,2,3,4	Vss-Vdd	V
VBZ/INT	Vss-Vdd	V
RESET	Vss-Vdd	V

Symbol	Rating	Unit
Rosc	Vss-Vdd	V
X2	Vreg-Vdd	V
PWR(ALM)	Vss-Vdd	V
\#EB2	Vss-Vdd	V
P1,2,3,4	Vss3-Vdd	V
SEG1-25	Vss3-Vdd	V
COM1,2,3	Vss3-Vdd	V
CUP1,2	Vss3-Vdd	V
Vout1,2	Vss-Vdd	V
T(operating)	$-60-+60$	Degree C
T(storage)	$-55-+125$	Degree C

Common Plate Usage

	Static	$1 / 2$ duty	$1 / 3$ duty
COM1	V	V	V
COM2	-	V	V
COM2	-	-	V
Alternating Frequency	32 Hz	32 Hz	43 Hz

Operating Conditions

Timing	Description	Min.	Typ.	Max.	Unit	Condition
T A	Ambient temperature under bias	0	2.5	70	${ }^{\circ} \mathrm{C}$	
Vdd	Snpply voltage	2.4	4.5	6.0	V	Vss=0V
Xosc	Oscillation frequency for CPU	32768	32768	32768	Hz	
Vosc	Oscillation frequency for playing voice		6000		Hz	

AC Characteristics at $4.5 \mathrm{~V} \& 6 \mathrm{KHz}$ S.R.

Timing		Min.	Typ.	Max.	Remarks

DC Characteristics at 3.0 Vdd

Symbol	Name	Valid	Min.	Typ.	Max.	Unit	Remarks
I sb	stand by I	Vdd	-	8	-	uA	
I op	operation I	Vdd	-	100	-	uA	
I ohv	output high I	Vouts	-	-	-	mA	
I oLv	output low I	Vouts	-	-	-	mA	
I co	cuurent output	Cout	-	2.5	-	mA	
		Cout	-	-	-	mA	
d F/F	frequency stability		-5	-	5	$\%$	$[\mathrm{Fosc}(3.0 \mathrm{~V})-\mathrm{Fosc}(2.7 \mathrm{~V})] / \mathrm{Fosc}(3.0 \mathrm{~V})$
d F/F	frequency variation		-10	-	10	$\%$	6 KHz S.R., 680 kohm Rosc
R osc	oscillation R	Rosc	-	680	-	kohm	S.R. $=6000 \mathrm{~Hz}$
		Rosc	-	620	-	kohm	S.R. $=8000 \mathrm{~Hz}$

DC Characteristics at 4.5 Vdd

Symbol	Name	Valid	Min.	Typ.	Max.	Unit	Remarks
I sb	stand by I	Vdd	-	10	-	uA	
I op	operation I	Vdd	-	500	-	uA	
I ohv	output high I	Vouts	-	-	-	mA	
I oLv	output low I	Vouts	-	-	-	mA	
I co	current output	Cout	-	4	-	mA	
		Cout	-	-	-	mA	
V ohp	o/p high V	P port	*-0.4V	-		V	$1 \mathrm{oh}=-400 \mathrm{uA}$
V oLp	o/p low V	P port		-	*+0.4V	V	$1 \mathrm{oL}=400 \mathrm{uA}$
V ohw	o/p low V	PWR	*-0.4V	-		V	$1 \mathrm{oh}=-1 \mathrm{~mA}$
V oLw	o/p high V	PWR		-	* +0.4 V	V	$1 \mathrm{oL}=1 \mathrm{~mA}$
V ohio	o/p low V	i/o port	*-0.4V	-		V	$1 \mathrm{oh}=-100 \mathrm{uA}$
V oLio	o/p high V	i/o port		-	*+0.4V	V	$1 \mathrm{oL}=100 \mathrm{uA}$
V ohc	o/p low V	Com	*-0.4V	-		V	l oh $=-4 \mathrm{uA}$
V oLc	o/p high V	Com		-	*+0.4V	V	$1 \mathrm{oL}=4 \mathrm{uA}$
V ohg	o/p low V	Seg's	*-0.4V	-		V	$1 \mathrm{oh}=-0.4 \mathrm{uA}$
V oLg	o/p high V	Seg's		-	*+0.4V	V	$1 \mathrm{oL}=0.4 \mathrm{uA}$
d F/F	frequency stability		-5	-	5	\%	[Fosc(4.5V)-Fosc(4.0V)]/Fosc(4.5V)
d F/F	frequency variation		-10	-	10	\%	$6 \mathrm{KHz} \mathrm{S.R.}$,680 kohm Rosc
R isn	input R when on	S port	-	330	-	kohm	pulldown X'tor=on \& note 1
R isf	input R when off	S port	-	30	-	kohm	pulldown X'tor=off, halt mode \& note 1
R imn	input R when on	M port	-	30	-	kohm	pulldown X'tor=on \& note 1
R imf	input R when off	M port	-	30	-	kohm	pulldown X'tor=off, halt mode \& note 1
R inh	input R	VBZ,INT	-	140	-	kohm	Vss2=0V, Vi=Vdd, VBZ=high
R inL	input R	VBZ,INT	-	3	-	kohm	Vss2=0V, Vi=Vdd, VBZ=low
R ir	input R	RESET	-	18	-	kohm	Vss2=0V, Vi=Vdd
R osc	oscillation R	Rosc	-	680	-	kohm	S.R. $=6000 \mathrm{~Hz}$
		Rosc	-	620	-	kohm	S.R. $=8000 \mathrm{~Hz}$
			-		-		
			-		-		

Note 1. Vss2=0V, Vi=Vss2+0.4V Note 2. *:= Vdd

Instruction Set Summary

Syntax

1	ADC	A, Rm
2	ADC	Wn, d
3	ADCS	A, Rm
4	ADCS	Wn, d
5	ADD	A, Rm
6	ADD	Wn, d
7	ADDS	A, Rm
8	ADDS	Wn, d
9	ADL	A, Rm
10	ADL	Wn, d
11	ADLS	A, Rm
12	ADLS	Wn, d
13	AND	A, Rm
14	AND	Wn, d
15	ANDS	A, Rm
16	ANDS	Wn, d
17	CALL	d10
18	CLRM	d7
19	CLRS	d9
20	HALT	
21	IN	Rm, PA
22	IN	Rm, PB
23	IN	Rm, PS
24	IN	Rm, PM
25	INM	Rm, PA
26	INM	Rm, PB
27	JC	d10
28	JMP	d10
29	JNC	d10
30	JNZ	d10
31	JPK	d10
32	JZ	d10
33	LCD	Lx, Rm
34	LCDB	Lx, Rm
35	LCDP	Lx, Rm
36	MOV	HI , d8
37	MOV	PH, d5
38	MOV	Rm, SR2
39	MOV	Rm, SR1
40	MOV	A, Rm

Description

Addition with Carry
"
ADC and store
"
addition
"
ADD and store
"
addition logical
"
ADL and store
"
move the AND result to Accumulator
"
AND and store
"
call the subroutine at address d10
turn the LGT and clear modes
clear setting
halt the processor
input to Rm from port A
input to Rm from port B
input to Rm from port S
input to Rm from port M
input to Rm from port g
"
jump if Carry set
jump absolute
jump if non-Carry
jump if non-zero
jump on bit k value
jump if zero
write number to LCD w/zero
write number to LCD w/blank
write pattern to LCD
move data to HIB
move data to port halt interrupt release byte
move ESR to register Rm
"
move data to Accumulator from Rm

Instruction Set Summary (Continued)

Syntax		Description
41	MOV	Rm, A

Note. Refer to Voice Smart Programmer's Guide (pid321) for details of each instruction.

COB Information I	
Silk screen \& copper print	
COB model number : M9201 Chip bonded : U30x2	
Legend	
	Copper pad for X'tal
	Copper pad for LCD
	Copper pad for LCD
	Copper pad
	Through hole
	Through hole
	Alignment hole for Jig

COB Information II

Signal Name \& Location Description
COB model number : M9201
Chip bonded : either U30x2
Please refer previous page for legends

Timing Diagram

To be Available soon

Standard Code Line Up

To be Available soon

MOSEL VITELIC INC.

Typical Application Circuit

Note: All the above components need to adjust possibly case by case to meet required performance.

Bonding Pad Information

Pad No.	Designation
1	SEG2
2	SEG3
3	SEG4
4	SEG5
5	SEG6
6	SEG7
7	SEG8
8	SEG9
9	SEG10
10	SEG11
11	SEG12
12	SEG13
13	SEG14
14	SEG15
15	SEG16
16	SEG17
17	SEG18
18	SEG19
19	SEG20
20	SEG21
21	SEG22
22	SEG23
23	SEG24
24	SEG25
25	COM3
26	COM2
27	BAK
28	Vss1
29	Vss2
30	S4
31	S3
32	LG1
33	IOA1
34	IOA2
35	IOA3

X		Y
-1775		-1827
-1618	-1827	
-1450		-1827
-1294		-1827
-1126		-1827
-970		-1827
-801		-1827
-645	-1827	
-477	-1827	
-321	-1827	
-153	-1827	
3	-1827	
171	-1827	
327	-1827	
495	-1827	
651	-1827	
820	-1827	
976	-1827	
1144	-1827	
1300	-1827	
1468	-1827	
1625	-1827	
1995	-1757	
1995	-1127	
1995	-943	
1995	-707	
1908	-416	
1908	-275	
1932	-129	
1986	31	
1986	257	
1985	519	
1985	700	
1985	846	
1985	1011	

Pad No.	Designation	X	Y
36	IOA4	1985	1156
37	RES	1986	1349
38	NC2	1995	1657
39	NC3	1905	1824
40	Vdd2	1525	1827
41	ROSC	1300	1827
42	VssV	1080	1827
43	COUT	920	1827
44	VOUT1	625	1826
45	VOUT2	408	1826
46	IOB1	254	1826
47	IOB2	87	1826
48	IOB3	-58	1826
49	NC1	-252	1783
50	IOB4	-430	1826
51	VBZ/INT	-654	1826
52	P1	-821	1826
53	P2	-967	1826
54	P3	-1132	1826
55	P4	-1277	1826
56	M1	-1458	1827
57	M2	-1685	1827
58	M3	-1995	1627
59	M4	-1995	1401
60	NC4	-1995	1191
61	S2	-1995	1015
62	S1	-1995	789
63	Vdd1	-1995	629
64	VREG	-1962	467
65	CUP1	-1994	56
66	CUP2	-1994	-158
67	X1	-1995	-464
68	X2	-1995	-633
69	COM1	-1995	-955
70	SEG1	-1995	-1138

Taiwan	Taipei	China	Hongkong	U.S.A.	Japan
\#1, Creation Road I,	7F, \#102, Section 3,	(Vitelic HKG ShenZhen)	\#19, Dai Fu Street,	\#3910,	WBG Marive West 25F,
Science-based Indus. Park,	Ming Chung E. Road,	Room\#1315, Shenkan Bldg.	Taipo Industrial Estate,	North First Street,	\#6, Nakase 2-chome,
Hsinchu, 30077	Taipei,105	\#4, Shangbu central road,	Taipo, N.T.	San Jose,	Mihama-ku, Chiba-shi,
Taiwan, ROC	Taiwan, ROC	ShenZhen city, 518028,	Hongkong	CA. 95134-1501	Chiba 261-7125,
"audio_reply@mosel.com.tw"		P.R.China		U.S.A.	Japan
TEL: 886-3-578-3344	TEL: 886-2-2545-1213		TEL: 852-2665-4883		
FAX: 886-3-579-2955	FAX: 886-2-2545-1214	TEL: 86-755-322-9805	FAX: 852-2664-2406	TEL: 1-408-433-6000	TEL: 81-43-299-6000
FAX: 886-3-578-4732	Mdm: 886-2-2545-1464	FAX: 86-755-322-9806	FAX: 852-2770-8011	FAX: 1-408-433-0952	FAX: 81-43-299-6555
		Mdm: 86-755-332-3995	Mdm: 852-2388-0244		

T O : \quad Mosel Vitelic Inc. 886-3-5772788 (fax)
MSU3042
3 digit production code
Attention: Sales \& Marketing Department

Product Request Form

filled by MVI only
We hereby request MVI to start preparing produce MSU3042 which is specified as below descriptions titled \qquad as well as form A and form(s) B and form(s) C.
I already read this data sheet pid 262* and understand MSU3042 completely and know how to specify to fit my requirement. The voice length limit is B0000h.

Phone \# : \qquad Fax \# : \qquad
Company Name : \qquad Date: \qquad
Signature :
Name Typed: \qquad
Position Title : \qquad
Department, Section : \qquad

Hardcopy of cover page of U3032, U3022 PRF (product request form) are provided per request.

TITLE

Product Request Form A : Mask Definitions

Mask options		Selections	
1	Power bias	$\square \mathrm{Li}-1 / 2 \mathrm{Bias}$	
2	LCD driver \& display frequency	$1 / 2$ duty 128 Hz $1 / 3$ duty 170.7 Hz Static 128 Hz	$\square 1 / 2$ duty 64 Hz $\square 1 / 2$ duty 32 Hz $\square 1 / 3$ duty 85.3 Hz $\square 1 / 3$ duty 42.7 Hz \square Static 64 Hz \square Static 32 Hz
3	S-port defined	\square Open	\square Hold transistor
4	M-port defined	\square Open	\square Hold transistor
5	Interrupt switch	\square Pull down	\square Pull up
6	Interrupt edge	\square Rising	\square Falling
7	Power-on mode	\checkmark BackUp	\square Non-BackUp
8	External Reset	\square and PowerOn reset	\square Only
9	${ }^{\text {note }}$ Chatter Removal time	$\square 8 \mathrm{mS}$ time	$\square 2 \mathrm{mS}$ time
10	${ }^{\text {note }}$ Set time	\square Slower (Tk=512 mS)	\square Faster (Tk=8000uS)
11	Oscillator	V Crystal	
12	System Clock	\square Fast (Fosc)	\square Slow (Fosc/2)
13	Alarm frequency	\checkmark Level shift	
14	P-port	V Level shift	
15	${ }^{\text {note }} \quad$ Input port signal	V Level shift	
16	Light mode	V Always	
17	Reset level	V High	
18	I/O port	V Level shift	
19	Light	V Level shift	

Note 9 : For S port and M port
Note 10 : Set time = (set value + 1) * Tk / Fosc ; Fosc is in KHz
Note 15 : Input port control signal level shift, J48, J49How many words are defined? (1< ≤ 256) And Forms are attached: $\square \mathrm{B} 1 \quad \square \mathrm{~B} 2 \quad \square \mathrm{~B} 3 \quad \square \mathrm{~B} 4$
\square How many sentences are defined ? (1 And Forms are attached: $\square \mathrm{C} 1 \quad \square \mathrm{C} 2$ $\square \stackrel{\square}{\mathrm{C}}$ 256) $\square \mathrm{C} 4 \quad \square \mathrm{C} 5$ \qquad $6 \quad \square \mathrm{C} 7$ $\square \mathrm{C} 8$

Product Request Form B1 : Voice Word Definitions
TITLE

Address	Voice Description	VoiceLength		MuteLength		$\begin{aligned} & \text { WordTotal } \\ & \leq 100000 \mathrm{~h} \end{aligned}$
00		S	00h	s	00h	00h
01		S	00h	S	OOh	00h
02		S	00h	S	OOh	00h
03		s	00h	s	00h	00h
04		s	00h	s	00h	00h
05		S	00h	s	00h	00h
06		s	00h	s	00h	00h
07		S	00h	s	00h	00h
08		s	00h	s	00h	00h
09		s	00h	s	00h	00h
10		s	00h	s	00h	00h
11		s	00h	s	00h	00h
12		s	00h	s	00h	00h
13		s	00h	S	00h	00h
14		s	00h	s	00h	00h
15		s	00h	s	00h	00h
16		s	00h	S	00h	00h
17		s	00h	s	00h	00h
18		s	00h	S	00h	00h
19		s	00h	s	00h	00h
20		s	00h	s	00h	00h
21		s	00h	s	00h	00h
22		s	00h	s	00h	00h
23		s	00h	s	00h	00h
24		s	00h	s	00h	00h
25		s	00h	s	00h	00h
26		s	00h	s	00h	00h
27		s	00h	s	00h	00h
28		s	00h	s	00h	00h
29		S	00h	s	00h	00h
30		s	00h	s	00h	00h
31		s	00h	s	00h	00h

There are		$1 \leq$	≤ 64	words defined on this form.			
32			S	00h	s	00h	00h
33			S	00h	s	00h	00h
34			S	00h	s	00h	00h
35			S	00h	s	00h	00h
36			S	00h	s	00h	00h
37			S	00h	s	00h	00h
38			S	00h	s	00h	00h
39			S	00h	s	00h	00h
40			S	00h	s	00h	00h
41			s	00h	s	00h	00 h
42			s	00h	s	00h	00 h
43			s	OOh	s	00h	00h
44			s	00h	s	00h	00h
45			s	00h	S	00h	00h
46			S	00h	s	00h	00h
47			s	00h	S	00h	00h
48			S	00h	s	00h	00h
49			S	00h	s	00h	00h
50			S	00h	s	00h	00h
51			s	00h	s	00h	00h
52			s	00h	s	00h	00h
53			s	00h	s	00h	00 h
54			s	00h	s	00h	00 h
55			s	00h	s	00h	00h
56			s	00h	s	00h	00h
57			s	00h	s	00h	00h
58			S	00h	s	00h	00h
59			s	00h	S	00h	00h
60			S	00h	s	00h	00h
61			s	00h	s	00h	00h
62			s	00h	s	00h	00h
63			S	00h	s	00h	00h
summation of above 64 words is				00			
All words' length sum'n is							

Harcopy of complete set PRF (product request form) pages B2-B4 and C1-C8 are provided per request.

