
BUX84 NPN SILICON POWER TRANSISTOR

Bourns®

- •
- 40 W at 25°C Case Temperature
- 2 A Continuous Collector Current
- 3 A Peak Collector Current
- Typical t_f = 200 ns at 25°C

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
Collector-base voltage ($I_E = 0$)	V _{CBO}	800	V	
Collector-emitter voltage (V _{BE} = 0)	V _{CES}	800	V	
Collector-emitter voltage (I _B = 0)	V _{CEO}	400	V	
Continuous collector current	۱ _С	2	A	
Peak collector current (see Note 1)	I _{CM}	3	A	
Continuous device dissipation at (or below) 25°C case temperature	P _{tot}	40	W	
Operating junction temperature range	Тj	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	

NOTE 1: This value applies for $t_p \le 2$ ms, duty cycle $\le 2\%$.

electrical characteristics at 25°C case temperature (unless otherwise noted)

I	PARAMETER	TEST CONDITIONS		MIN	ТҮР	MAX	UNIT		
V _{CEO(sus)}	Collector-emitter sustaining voltage	I _C =	0.1 A	L = 25 mH	(see Note 2)	400			V
I _{CES}	Collector-emitter cut-off current		800 V 800 V	V _{BE} = 0 V _{BE} = 0	T _C = 125°C			0.2 1	mA
I _{EBO}	Emitter cut-off current	V _{EB} =	5 V	$I_{\rm C} = 0$				1	mA
h _{FE}	Forward current transfer ratio	V _{CE} =	5 V	I _C = 0.1 A	(see Notes 3 and 4)		35		
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = I _B =	0.03 A 0.2 A	$I_{\rm C} = 0.3 \text{ A}$ $I_{\rm C} = 1 \text{ A}$	(see Notes 3 and 4)			0.8 1	V
V _{BE(sat)}	Base-emitter saturation voltage	I _B =	0.2 A	I _C = 1 A	(see Notes 3 and 4)			1.1	V
f _t	Current gain bandwidth product	V _{CE} =	10 V	I _C = 0.2 A			12		MHz
C _{ob}	Output capacitance	V _{CB} =	20 V	I _E = 0	f = 0.1 MHz		60		pF

NOTES: 2. Inductive loop switching measurement.

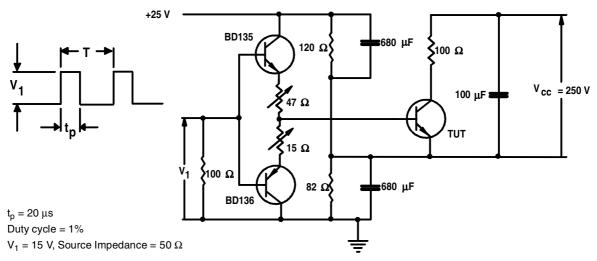
3. These parameters must be measured using pulse techniques, t_p = 300 $\mu s,$ duty cycle $\leq 2\%.$

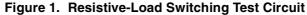
4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

5. To obtain f_t the $[h_{FE}]$ response is extrapolated at the rate of -6 dB per octave from f = 1 MHz to the frequency at which $[h_{FE}] = 1$.

thermal characteristics

Ī	PARAMETER			MAX	UNIT
ſ	R _{0JC} Junction to case thermal resistance			2.5	°C/W


resistive-load-switching characteristics at 25°C case temperature (unless otherwise noted)


PA	ARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on} Ti	īurn on time	I _C = 1 A	I _{B(on)} = 0.2 A	I _{B(off)} = -0.4 A		0.25	0.5	μs
t _s S	Storage time	$V_{CC} = 250 V$	(see Figures 1 and 2)	IB(off)0.4 A		1.8		μs
t _f F	all time	V _{CC} = 230 V				0.2		μs
t _f F	all time	$I_{\rm C} = 1 \text{ A}$ $V_{\rm CC} = 250 \text{ V}$	I _{B(on)} = 0.2 A T _C = 95°C	$I_{B(off)} = -0.4 \text{ A}$			0.4	μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

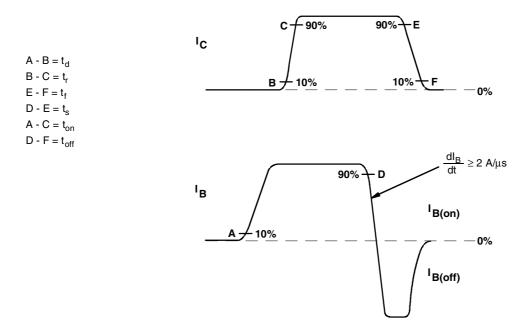
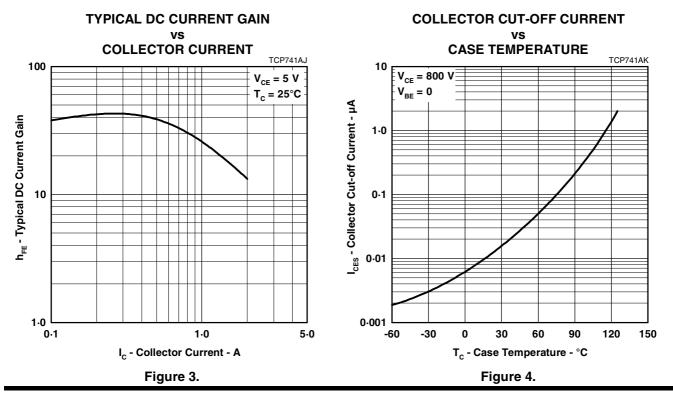
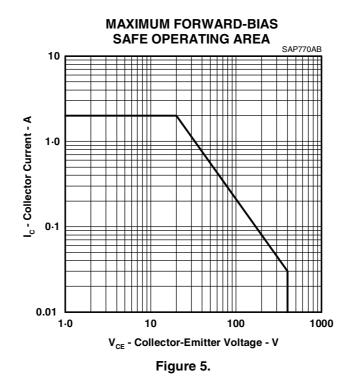




Figure 2. Resistive-Load Switching Waveforms

THERMAL INFORMATION

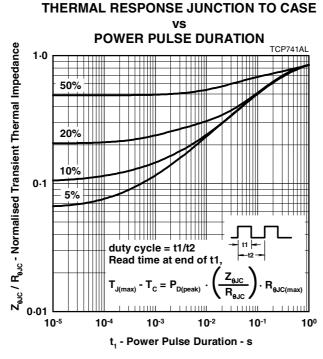
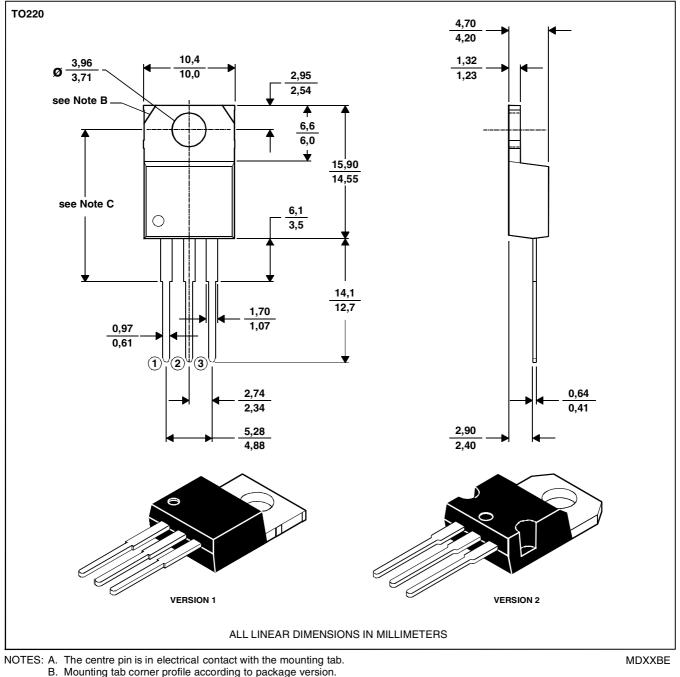


Figure 6.


BOURNS®

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

C. Typical fixing hole centre stand off height according to package version.

Version 1, 18.0 mm. Version 2, 17.6 mm.

PRODUCT INFORMATION

AUGUST 1978 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.