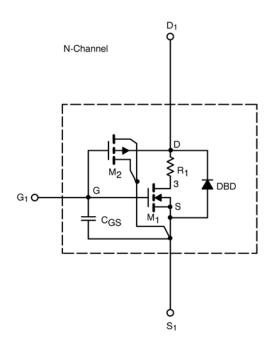


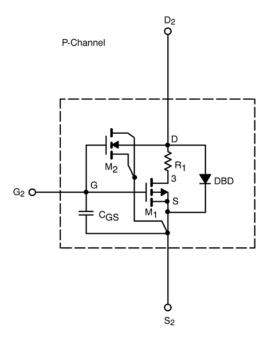
Vishay Siliconix

Dual N- and P-Channel 40-V (D-S) MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Parameter	Symbol	Test Condition		Simulated Data	Measured Data	Unit
Static						
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	N-Ch	1.4		v
		V_{DS} = V_{GS} , I_D = -250 μ A	P-Ch	1.9		
On-State Drain Current ^a	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 10 V	N-Ch	97		A
		V_{DS} = -5 V, V_{GS} = -10 V	P-Ch	67		
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I _D = 4.1 A	N-Ch	0.049	0.048	Ω
		V_{GS} = -10 V, I _D = -3.6 A	P-Ch	0.056	0.058	
		V_{GS} = 4.5 V, I _D = 3.8 A	N-Ch	0.056	0.056	
		V_{GS} = -4.5 V, I _D = -2.9 A	P-Ch	0.097	0.097	
Forward Transconductance ^a	g _{fs}	V _{DS} = 15 V, I _D = 4.1 A	N-Ch	9	15	s
		$V_{DS} = -15 \text{ V}, \text{ I}_{D} = -3.6 \text{ A}$	P-Ch	6.3	7	
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 1.5 A, $V_{\rm GS}$ = 0 V	N-Ch	0.72	0.80	v
		$I_{\rm S}$ = -1.6 A, $V_{\rm GS}$ = 0 V	P-Ch	0.80	-0.80	
Dynamic ^b	• •			•		
Input Capacitance	C _{ISS}		N-Ch	471	355	
		N-Channel	P-Ch	567	480	
Output Capacitance	C _{oss}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{V}, \text{f} = 1 \text{MHz}$	N-Ch	53	50	- 5
		P-Channel	P-Ch	76	80	pF
Reverse Transfer Capacitance	C _{RSS}	$V_{DS} = -20 V$, $V_{GS} = 0 V$, f = 1 MHz	N-Ch	25	29	
			P-CH	57	56	
Total Gate Charge	Q _g	V_{DS} = 20 V, V_{GS} = 10 V, I_{D} = 5 A	N-Ch	6.5	8	2 7 5 1
		$V_{\rm DS}$ = $-$ 20 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = $-$ 5 A	P-Ch	10.5	12	
			N-Ch	3.3	3.7	
		N-Channel	P-Ch	5.7	6	
Gate-Source Charge	Q _{gs}	$V_{DS} = 20 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$	N-Ch	1.1	1.1	
		P-Channel	P-Ch	1.5	1.5	
Gate-Source Charge	Q _{gs}	V_{DS} = $-$ 20 V, V_{GS} = -4.5 V, I_{D} = $-$ 5 A	N-Ch	1.4	1.4	
			P-Ch	2.7	2.7	

Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si4567DY

–55°C ТС

25°C

1.5

1.0

8

5.0

Qg – Total Gate Charge (nC)

7.5

12

ID – Drain Current (A)

VGS

16

20

10

8

6

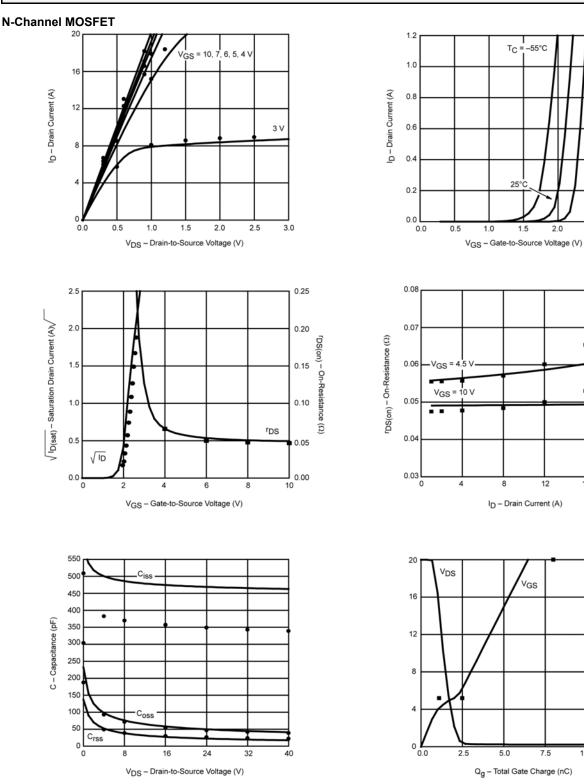
4

2

12.5

10.0

Vishay Siliconix

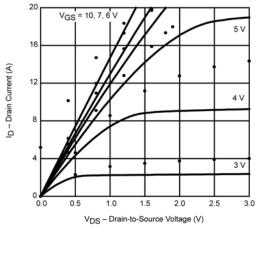

125°C

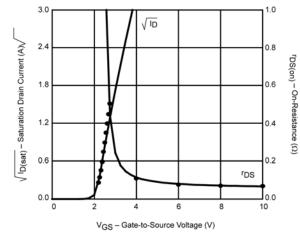
2.5

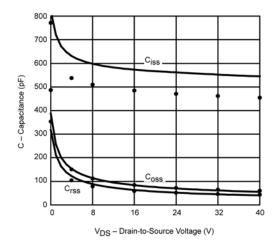
2.0

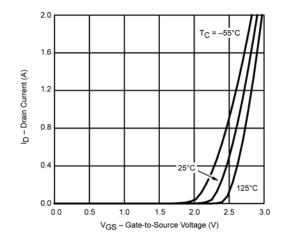
3.0

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

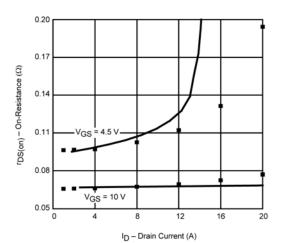


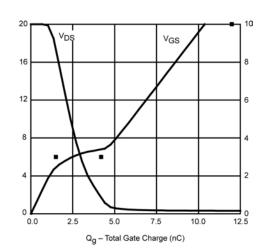

Note: Dots and squares represent measured data.


SPICE Device Model Si4567DY


Vishay Siliconix

P-Channel MOSFET





VISHAY

Note: Dots and squares represent measured data.