

1.0A HIGH VOLTAGE GLASS BODY RECTIFIER

Features

- Hermetically Sealed Glass Body Construction
- High Voltage to 1600V with Low Leakage
- Surge Overload Rating to 25A Peak

$\begin{array}{c|c} A & & & \\ \hline \end{array}$

Mechanical Data

Case: DOT-30B, Glass

• Terminals: Plated Leads Solderable per

MIL-STD-202, Method 208

Polarity: Cathode BandMarking: Type Number

Weight: 0.50 grams (approx.)

DOT-30B			
Dim	Min	Max	
Α	26.0		
В	_	4.2	
С	_	0.82	
D	_	3.0	
All Dimensions in mm			

Maximum Ratings and Electrical Characteristics @ T_j = 25°C unless otherwise specified

Characteristic	Symbol	BYT40Y	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	1600	V
RMS Reverse Voltage	$V_{R(RMS)}$	1130	V
Average Rectified Output Current @ T _A = 40°C	lo	1.0	Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave Superimposed on Rated Load (JEDEC Method)	I _{FSM}	25	А
Forward Voltage @ I _F = 1.0A	V_{FM}	1.3	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{RM}	5.0 150	μΑ
Reverse Recovery Time (Note 2)	t _{rr}	3.0	μs
Typical Junction Capacitance (Note 3)	Cj	6.0	pF
Typical Thermal Resistance Junction to Ambient (Note 1)	$R_{ hetaJA}$	60	K/W
Operating and Storage Temperature Range	T_{j} , T_{STG}	-55 to +150	°C

Notes

- 1. Valid provided that leads are kept at ambient temperature at a distance of 10mm from the case.
- 2. Measured with I_F = 0.5A, I_R = 1.0A, I_{rr} = 0.25A. See Figure 5.
- 3. Measured at 1.0MHz and applied reverse voltage of 4.0V DC.

Fig. 5 Reverse Recovery Time Characteristic and Test Circuit