

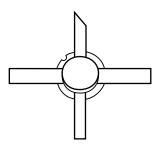
Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

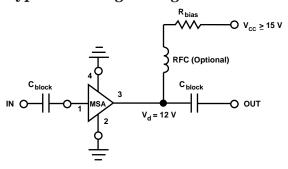
MSA-0520

Features

- Cascadable 50 Ω Gain Block
- **High Output Power:** +23 dBm Typical P_{1 dB} at 1.0 GHz
- Low Distortion: 33 dBm Typical IP₃ at 1.0 GHz
- 8.5 dB Typical Gain at 1.0 GHz
- Hermetic Metal/Beryllia Microstrip Package


Description

The MSA-0520 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic,


BeO disk package for good thermal characteristics. This MMIC is designed for use as a general purpose $50~\Omega$ gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using HP's $10\,\mathrm{GHzf_T}, 25\,\mathrm{GHzf_{MAX}},$ silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

200 mil BeO Package

Typical Biasing Configuration

5965-9582E 6-358

MSA-0520 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	225 mA				
Power Dissipation ^[2,3]	3.0W				
RF Input Power	+25 dBm				
Junction Temperature	200°C				
Storage Temperature	−65 to 200°C				

Thermal Resistance $^{[2,4]}$:						
$\theta_{\rm jc} = 25$ °C/W						

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 40 mW/°C for $T_C > 125$ °C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25$ °C

Symbol	Parameters and Test Conditions: I_d	Units	Min.	Тур.	Max.	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm	21.0	23.0	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	7.5	8.5	9.5
$\Delta G_{ m P}$	Gain Flatness	f = 0.1 to 2.0 GHz	dB		± 0.75	
f _{3 dB}	$3\mathrm{dB}\mathrm{Bandwidth^{[2]}}$		GHz		2.8	
VSWR	Input VSWR	f = 0.1 to 2.0 GHz			2.0:1	
VSWK	Output VSWR	f = 0.1 to 2.0 GHz			2.5:1	
IP3	Third Order Intercept Point	f = 1.0 GHz	dBm		33.0	
$NF_{50\Omega}$	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		6.5	
t_{D}	Group Delay	f = 1.0 GHz	psec		170	
Vd	Device Voltage		V	10.5	12.0	13.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-16.0	

Notes:

- 1. The recommended operating current range for this device is 80 to 200 mA. Typical performance as a function of current is on the following page.
- 2. Referenced from $0.1 \text{ GHz Gain } (G_P)$.

MSA-0520 Typical Scattering Parameters (T $_{A}$ = 25 $^{\circ}\mathrm{C},\,I_{d}$ = 165 mA)

Freq.	\mathbf{S}_1	11		S_{21}		\mathbf{S}_{12}			5		
MHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
5	.57	-38	14.4	5.25	165	-19.4	.107	38	.67	- 35	0.57
25	.25	- 90	10.7	3.42	160	-14.9	.180	17	.29	- 81	0.93
50	.15	-111	9.5	2.97	163	-14.4	.190	9	.18	– 97	1.10
100	.11	-138	8.9	2.80	166	-14.2	.195	3	.11	- 113	1.16
200	.10	- 152	8.8	2.75	163	-14.1	.197	1	.10	-125	1.17
400	.10	- 152	8.7	2.72	152	-14.1	.198	- 2	.14	-123	1.16
600	.11	- 147	8.6	2.70	140	-14.0	.199	-4	.18	- 123	1.14
800	.13	-142	8.5	2.67	128	-14.1	.199	- 6	.22	-127	1.12
1000	.15	-140	8.4	2.64	115	-14.1	.198	-8	.27	-131	1.09
1500	.22	- 142	8.0	2.52	85	-13.7	.206	- 12	.34	- 143	0.98
2000	.30	-156	7.4	2.36	55	-13.3	.216	-16	.43	-158	0.85
2500	.37	-170	6.7	2.16	33	-12.9	.227	-18	.48	-166	0.75
3000	.41	170	5.6	1.91	8	-12.7	.232	- 23	.51	-177	0.70
3500	.45	149	4.5	1.68	-16	-12.1	.249	- 31	.55	173	0.63
4000	.46	124	3.3	1.45	-4 0	-11.7	.259	– 39	.56	162	0.66

A model for this device is available in the DEVICE MODELS section.

Typical Performance, $T_A = 25^{\circ}C$

(unless otherwise noted)

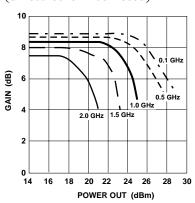


Figure 1. Typical Gain vs. Power Out, $T_A = 25^{\circ}C$, $I_d = 165$ mA.

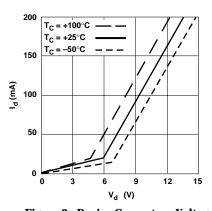


Figure 2. Device Current vs. Voltage.

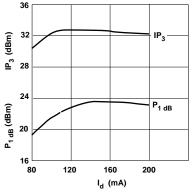


Figure 3. Output Power at 1 dB Gain Compression, Third Order Intercept vs. Current, f = 1.0 GHz.

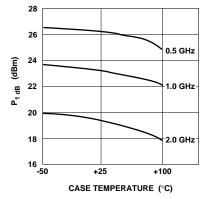


Figure 4. Output Power @ 1 dB Gain Compression vs. Temperature, I_d = 165 mA.

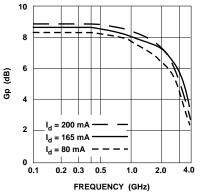


Figure 5. Gain vs. Frequency.

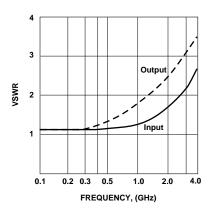
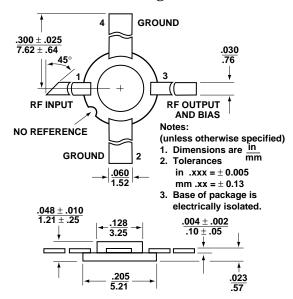



Figure 6. VSWR vs. Frequency, $I_d = 165 \text{ mA}.$

200 mil BeO Package Dimensions

