

NTE861 Integrated Circuit Quad, Normally Open, SPST JFET Analog Switch W/Disable

Description:

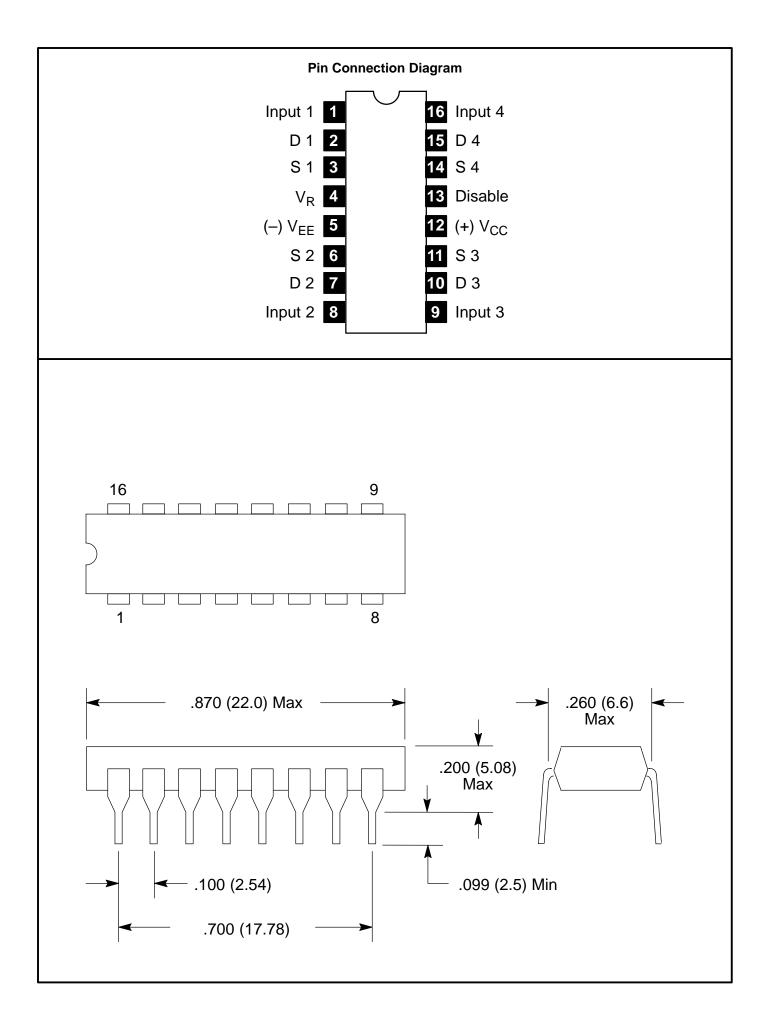
The NTE861 is a monolithic combination of bipolar and JFET technology producing a one chip quad JFET switch. A unique circuit technique is employed to maintain a constant resistance over the analog voltage range of ± 10 V. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break–before–make action.

Features:

- Analog signals are not loaded
- Constant "ON" resistance for signals up to ±10V and 100kHz
- Pin compatible with CMOS switches with the advantage of blow out free handling
- Small signal analog signals to 50MHz
- Break-before-make action
- High open switch isolation at 1.0MHz
- Low leakage in "OFF" state
- TTL, DTL, RTL compatibility
- Single disable pin opens all switches in package

This device operates from a ± 15 V supply and swings a ± 10 V analog signal. The JFET switches are designed for applications where a dc to medium frequency analog signal needs to be controlled.

Absolute Maximum Ratings:


Positive Supply–Negative Supply (V _{CC} –V _{EE})	36V
Reference Voltage	$V_{EE} \le V_{R} \le V_{CC}$
Logic Input Voltage	V_R -4.0 $V \le V_{IN} \le V_R$ +6.0 V
Analog Voltage	$V_{EE} \le V_A \le V_{CC}$ +6V; $V_A \le V_{EE}$ +36V
Analog Current	$\ldots \qquad \qquad I_A < \ 20 mA$
Power Dissipation (Note 1)	500mW
Operating Temperature Range	0° to 70°C
Storage Temperature	—65° to 150°C
Typical Thermal Resistance, Junction-to-Ambi	ent, R _{thJA} 85°C/W
Lead Temperature (Soldering, 10 seconds)	+300°C

Note 1 For operating at high temperature this device must be derated based on a +100°C maximum junction temperature and a thermal resistance of +150°C/W.

Electrical Characteristics: (Note 2)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
"ON" Resistance	R _{ON}	$V_A = 0, I_D = 1mA$	$T_A = +25^{\circ}C$	_	150	250	Ω
				_	200	350	Ω
"ON" Resistance Matching	R _{ON} Match	T _A = +25°C		_	10	50	Ω
Analog Range	V_A			±10	±11	_	V
Leakage Current in "ON" Condition	I _{S(ON)} + I _{D(ON)}	Switch "ON",	$T_A = +25^{\circ}C$	_	0.3	10	nA
		$V_S = V_D = \pm 10V$		_	3	30	nA
Source Current in "OFF" Condition	I _{S(OFF)}	Switch "OFF", $V_S = +10V$, $V_D = -10V$	$T_A = +25^{\circ}C$	_	0.4	10	nA
				_	3	30	nA
Drain Current in "OFF" Condition	I _{D(OFF)}		$T_A = +25^{\circ}C$	_	0.1	10	nA
				_	3	30	nA
Logical "1" Input Voltage	V_{INH}			2.0	_	-	V
Logical "0" Input Voltage	V_{INL}			_	_	0.8	V
Logical "1" Input Current	I _{INH}	V _{IN} = 5V	T _A = +25°C	_	3.6	40	μΑ
				_	_	100	μΑ
Logical "0" Input Current	I _{INL}	$V_{IN} = 0.8V$	$T_A = +25^{\circ}C$	_	_	0.1	μΑ
				_	_	1.0	μΑ
Delay Time "ON"	t _{ON}	$V_S = \pm 10V$, $T_A = +25^{\circ}C$		_	500	_	ns
Delay Time "OFF"	t _{OFF}	$V_S = \pm 10V, T_A = +25^{\circ}C$		_	90	-	ns
Break-Before-Make	t _{ON} - t _{OFF}	$V_S = \pm 10V, T_A = +25^{\circ}C$		_	80	-	ns
Source Capacitance	C _{S(OFF)}	Switch "OFF", $V_S = \pm 10V$, $T_A = +25$ °C		_	4.0	-	рF
Drain Capacitance	C _{D(OFF)}	Switch "OFF", $V_D = \pm 10V$, $T_A = +25$ °C		_	3.0	_	pF
Active Source and Drain Capacitance	C _{S(ON)} + C _{D(ON)}	Switch "ON", $V_S = V_D = \pm 10V$, $T_A = +25^{\circ}C$		_	5.0	_	pF
"OFF" Isolation	I _{SO(OFF)}	T _A = +25°C, Note 3		_	-50	-	dB
Crosstalk	СТ	$T_A = +25^{\circ}C$, Note 3		_	-65	-	dB
Analog Slew Rate	SR	T _A = +25°C, Note 4		_	50	-	V/µs
Disable Current	I _{DIS}	Note 5	T _A = +25°C	_	0.6	1.5	mΑ
				_	0.9	2.3	mΑ
Negative Supply Current Reference Supply Current	I _{EE}	All Switches "OFF", $V_S = \pm 10V$	T _A = +25°C	_	4.3	7.0	mA
				_	6.0	10.5	mA
		1	T _A = +25°C	_	2.7	5.0	mA
				_	3.8	7.5	mA
Positive Supply Current	I _{CC}	1	T _A = +25°C	_	7.0	9.0	mA
				_	9.8	13.5	mA

- Note 2. V_{CC} = +15V, V_{EE} = -15V, V_{R} = 0V, and limits apply for -25°C \leq T_{A} \leq +85°C unless otherwise specified.
- Note 3. These parameters are limited by the pin to pin capacitance of the package.
- Note 4. This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates.
- Note 5. All switches in the device are turned "OFF" by saturating a transistor at the disable node. The delay times will be approximately equal to the t_{ON} or t_{OFF} plus the delay introduced by the external transistor.

