NTE861 Integrated Circuit Quad, Normally Open, SPST JFET Analog Switch W/Disable ### **Description:** The NTE861 is a monolithic combination of bipolar and JFET technology producing a one chip quad JFET switch. A unique circuit technique is employed to maintain a constant resistance over the analog voltage range of ± 10 V. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break–before–make action. #### Features: - Analog signals are not loaded - Constant "ON" resistance for signals up to ±10V and 100kHz - Pin compatible with CMOS switches with the advantage of blow out free handling - Small signal analog signals to 50MHz - Break-before-make action - High open switch isolation at 1.0MHz - Low leakage in "OFF" state - TTL, DTL, RTL compatibility - Single disable pin opens all switches in package This device operates from a ± 15 V supply and swings a ± 10 V analog signal. The JFET switches are designed for applications where a dc to medium frequency analog signal needs to be controlled. ## **Absolute Maximum Ratings:** | Positive Supply–Negative Supply (V _{CC} –V _{EE}) | 36V | |---|--| | Reference Voltage | $V_{EE} \le V_{R} \le V_{CC}$ | | Logic Input Voltage | V_R -4.0 $V \le V_{IN} \le V_R$ +6.0 V | | Analog Voltage | $V_{EE} \le V_A \le V_{CC}$ +6V; $V_A \le V_{EE}$ +36V | | Analog Current | $\ldots \qquad \qquad I_A < \ 20 mA$ | | Power Dissipation (Note 1) | 500mW | | Operating Temperature Range | 0° to 70°C | | Storage Temperature | —65° to 150°C | | Typical Thermal Resistance, Junction-to-Ambi | ent, R _{thJA} 85°C/W | | Lead Temperature (Soldering, 10 seconds) | +300°C | Note 1 For operating at high temperature this device must be derated based on a +100°C maximum junction temperature and a thermal resistance of +150°C/W. ### **Electrical Characteristics**: (Note 2) | Parameter | Symbol | Test Conditions | | Min | Тур | Max | Unit | |---|--|---|------------------------|-----|-----|------|------| | "ON" Resistance | R _{ON} | $V_A = 0, I_D = 1mA$ | $T_A = +25^{\circ}C$ | _ | 150 | 250 | Ω | | | | | | _ | 200 | 350 | Ω | | "ON" Resistance Matching | R _{ON} Match | T _A = +25°C | | _ | 10 | 50 | Ω | | Analog Range | V_A | | | ±10 | ±11 | _ | V | | Leakage Current in "ON" Condition | I _{S(ON)} +
I _{D(ON)} | Switch "ON", | $T_A = +25^{\circ}C$ | _ | 0.3 | 10 | nA | | | | $V_S = V_D = \pm 10V$ | | _ | 3 | 30 | nA | | Source Current in "OFF" Condition | I _{S(OFF)} | Switch "OFF",
$V_S = +10V$, $V_D = -10V$ | $T_A = +25^{\circ}C$ | _ | 0.4 | 10 | nA | | | | | | _ | 3 | 30 | nA | | Drain Current in "OFF" Condition | I _{D(OFF)} | | $T_A = +25^{\circ}C$ | _ | 0.1 | 10 | nA | | | | | | _ | 3 | 30 | nA | | Logical "1" Input Voltage | V_{INH} | | | 2.0 | _ | - | V | | Logical "0" Input Voltage | V_{INL} | | | _ | _ | 0.8 | V | | Logical "1" Input Current | I _{INH} | V _{IN} = 5V | T _A = +25°C | _ | 3.6 | 40 | μΑ | | | | | | _ | _ | 100 | μΑ | | Logical "0" Input Current | I _{INL} | $V_{IN} = 0.8V$ | $T_A = +25^{\circ}C$ | _ | _ | 0.1 | μΑ | | | | | | _ | _ | 1.0 | μΑ | | Delay Time "ON" | t _{ON} | $V_S = \pm 10V$, $T_A = +25^{\circ}C$ | | _ | 500 | _ | ns | | Delay Time "OFF" | t _{OFF} | $V_S = \pm 10V, T_A = +25^{\circ}C$ | | _ | 90 | - | ns | | Break-Before-Make | t _{ON} - t _{OFF} | $V_S = \pm 10V, T_A = +25^{\circ}C$ | | _ | 80 | - | ns | | Source Capacitance | C _{S(OFF)} | Switch "OFF", $V_S = \pm 10V$, $T_A = +25$ °C | | _ | 4.0 | - | рF | | Drain Capacitance | C _{D(OFF)} | Switch "OFF", $V_D = \pm 10V$, $T_A = +25$ °C | | _ | 3.0 | _ | pF | | Active Source and Drain Capacitance | C _{S(ON)} +
C _{D(ON)} | Switch "ON", $V_S = V_D = \pm 10V$, $T_A = +25^{\circ}C$ | | _ | 5.0 | _ | pF | | "OFF" Isolation | I _{SO(OFF)} | T _A = +25°C, Note 3 | | _ | -50 | - | dB | | Crosstalk | СТ | $T_A = +25^{\circ}C$, Note 3 | | _ | -65 | - | dB | | Analog Slew Rate | SR | T _A = +25°C, Note 4 | | _ | 50 | - | V/µs | | Disable Current | I _{DIS} | Note 5 | T _A = +25°C | _ | 0.6 | 1.5 | mΑ | | | | | | _ | 0.9 | 2.3 | mΑ | | Negative Supply Current Reference Supply Current | I _{EE} | All Switches "OFF", $V_S = \pm 10V$ | T _A = +25°C | _ | 4.3 | 7.0 | mA | | | | | | _ | 6.0 | 10.5 | mA | | | | 1 | T _A = +25°C | _ | 2.7 | 5.0 | mA | | | | | | _ | 3.8 | 7.5 | mA | | Positive Supply Current | I _{CC} | 1 | T _A = +25°C | _ | 7.0 | 9.0 | mA | | | | | | _ | 9.8 | 13.5 | mA | - Note 2. V_{CC} = +15V, V_{EE} = -15V, V_{R} = 0V, and limits apply for -25°C \leq T_{A} \leq +85°C unless otherwise specified. - Note 3. These parameters are limited by the pin to pin capacitance of the package. - Note 4. This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates. - Note 5. All switches in the device are turned "OFF" by saturating a transistor at the disable node. The delay times will be approximately equal to the t_{ON} or t_{OFF} plus the delay introduced by the external transistor.