
SK 14 GD 063

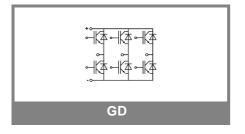
SEMITOP® 2

IGBT Module

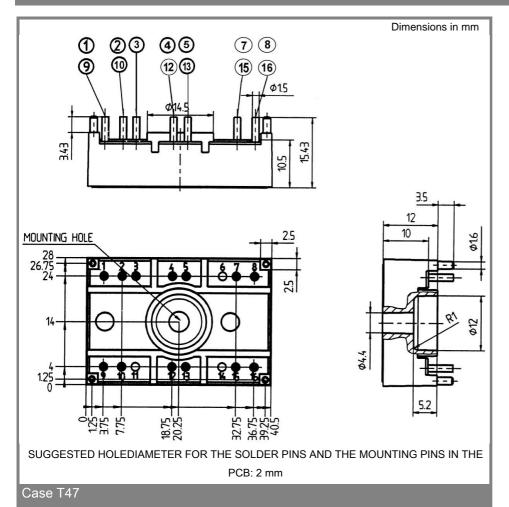
SK 14 GD 063

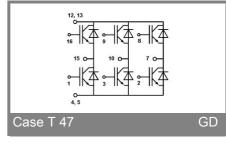
Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute	Maximum Ratings	T_s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT		•	'					
V_{CES}		600	V					
V_{GES}		± 20	V					
I _C	T _s = 25 (80) °C;	18 (13)	Α					
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$	36 (26)	Α					
T _j		- 40 + 150	°C					
Inverse / Freewheeling CAL diode								
I _F = - I _C	T _s = 25 (80) °C;	22 (15)	Α					
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	44 (30)	Α					
T _j		- 40 + 150	°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					

Characteristics		T_s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{CE(sat)}	$I_C = 10 \text{ A}, T_i = 25 (125) ^{\circ}\text{C}$		2,1 (2,4)	2,5 (2,8)	V		
$V_{GE(th)}$	$V_{CE} = V_{GE}$; $I_{C} = 0,0004 \text{ A}$	4,5	5,5	6,5	V		
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		0,57		nF		
$R_{th(j-s)}$	per IGBT			2	K/W		
	per module				K/W		
	under following conditions:						
t _{d(on)}	$V_{CC} = 300 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		45		ns		
t _r	I _C = 10 A, T _j = 125 °C		45		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 100 \Omega$		250		ns		
t _f			20		ns		
$E_{on} + E_{off}$	Inductive load		1		mJ		
Inverse / Freewheeling CAL diode							
$V_F = V_{EC}$	I _F = 10 A; T _i = 25 (125) °C		1,45 (1,4)	1,7 (1,7)	V		
$V_{(TO)}$	$T_{j} = (125) ^{\circ}C$		(0,85)	(0,9)	V		
r _T	$T_{j} = (125) ^{\circ}C$		(55)	(80)	mΩ		
$R_{th(j-s)}$				2,3	K/W		
	under following conditions:						
I _{RRM}	I _F = 10 A; V _R = -300 V		6,5		Α		
Q_{rr}	$dI_F/dt = -200 A/\mu s$		1		μC		
E _{off}	V _{GE} = 0 V; T _j = 125 °C		0,1		mJ		
Mechanical data							
M1	mounting torque			2	Nm		
w			21		g		
Case	SEMITOP® 2		T 47				

SK 14 GD 063

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.