

A.HE83131 Introduction

HE83131 is a member of 8-bit Micro-controller series that is developed by King Billion. This IC built-in 640-dot LCD driver and has one OP comparator. The built-in OP comparator can be used with (light `voice `temperature `humility) sensor etc. The 7-bit current-type D/A converter and PWM device provide the complete speech output mechanism. This IC is applicable to the medium systems such as LCD Games and Educational Toy etc. Use external SRAM or Flash RAM to have recording function.

This IC is very easy to learn and use. Most of instructions take only 3 oscillator clocks (machine cycles). As a result this IC is suitable for the applications that require higher performance system.

B.HE83131 Features

● Operation Voltage : 2.2V – 5.5V

• System Clock : $DC \sim 8MHz @ 5.0V$

DC ~ 4MHz @ 2.2V

• Internal ROM: 16K Bytes(16K Program ROM)

• Internal RAM: 256 Bytes

• Dual Clock System : Normal (Fast) clock : 32.768K ~ 8MHz

Slow clock: 32.768KHz

• Operation Mode: DUAL · FAST · SLOW · IDLE · SLEEP Mode.

- With WDT (WATCH DOG TIMER) to prevent deadlock condition.
- 12-bit Bi-directional I/O port. Mask Option can select PUSH-PULL or OPEN DRAIN output mode for each I/O pin.
- One built-in OP comparator.
- 640 dots LCD driver (A · B TYPE selectable).
- One 7-bit current-type DAC output.
- PWM device.
- Two external interrupts and two internal timers interrupts.
- Two 16-bit timers.
- Instruction set: 32 instructions, 4 addressing mode. 8-bit DATA POINTER for RAM and 14-bit TABLE POINTER for ROM.

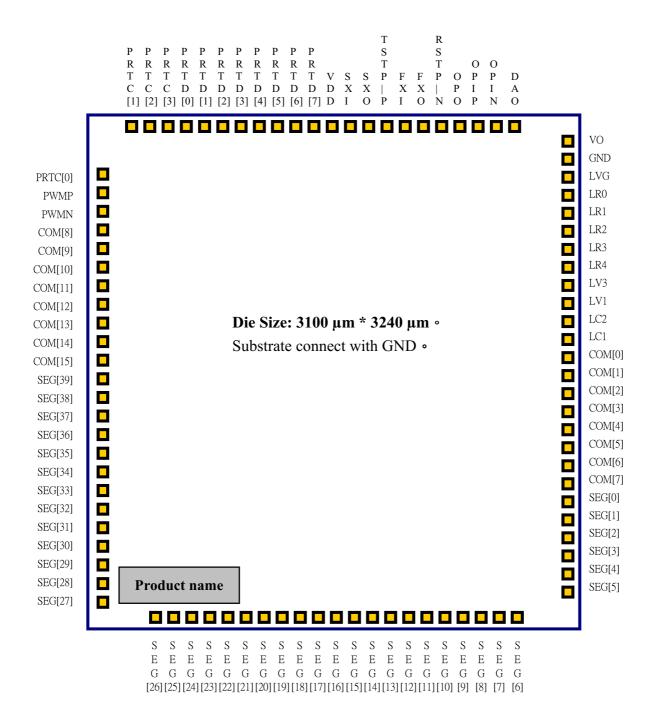
C. Internal Block

Item	I.F.C	E.S.C	C. I.I	P.R PR	OM	DROM	TP	TP+	1 RA	M	PP	DP	I/O	DTN	/IF	WDT	Timer
HE83131	0	0	(16	KB		14-bit	0	256	6B		8-bit	12	_	-	0	T1,T2
Item	VO	DAO	OP	PWM	I	CD	COM*S	SEG	Bias	Rgr	Ch	rgPmp	LV2	LR	LV	G RE	C S.R.
HE83131	0	0	0	0		640	16*4	0	1/5		1	,3/2	_	4:0	0	Ex	t. I

D. Pin Assignment

Pin#	Pin Name	I/O	Function	Description				
				Mask Option settings:				
			External fast clock pin.	MO_FCK/SCKN=00: Slow Clock only				
78	FXI,	Β,	Connecting to crystal or					
77	FXO	О	RC to generate 32.768 kHz	10: Dual Clock				
			~ 8MHz system clock.	11: Fast Clock only				
				MO FOSCE=0: Internal fast oscillation				
				1: External fast oscillation				
			External slow clock pin.	MO FXTAL=0: R,C oscillation for Fast Clock				
			Connecting with 32.768 Hz	. –				
81	SXI,	I,	OSC to generate the stable					
80	SXO	O	frequency for Slow Clock	1 + C + 1 - '11 +' - C - 20 7 (O)/				
			Mode and Timer clock	Clock •				
			source.	Program the value of OP1and OP2 to change the				
				operating modes (Normal, Slow, Idle and Sleep).				
				In Dual Clock mode, the system runs in Fast Clock,				
				only the LCD and timer I use the 32.768K clock source •				
				Pull this pin to low level to reset the system. Besides,				
	RSTP_N	I		select the Mask Option (MQ_PORE=1) to enable the HE83131 internal Power-on Reset function.				
76			System Reset Signal.	In addition, the MO_WDTE is used for Watch				
				Timer setting:				
				MO_WDTE=0: Disable Watch Dog Timer				
				=1: Enable Watch Dog Timer				
79	TSTP_P	I	Test Pin	Pull the pin to high level to enter into testing mode.				
91,				Mask Option MO_CPP[3:0] to preset the output type:				
92,	PRTC[3:0]	В	Port C bi-directional I/O	MO_CPP=1 : Push-pull output;				
93,			Pin (4Pins)	=0 : Open-drain output				
1				When assigned the port to input pin, send a '1' and read the result to get the input value				
			Part D hi directional I/O	Mask Option MO DPP[7:0] to preset the output type:				
			pin , (8 pins). PRTD[7:2] is					
83	PRTD[7:0]	В	also a Wake-up pin and	1 1 /				
90	1112[//0]			When assigned the port to input pin, send a '1' and read				
			interrupt input pin.	the result to get the input value				
114	<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>	S				
52	COM[15:0]	O	LCD COMmon Output	D Data filled from D8H, please refer the LCD RAM				
59			Î	map				
12	SEG[39:0]	О	LCD SEGment Output					
51								
61	LC2	В	Charge Pump Switch 1	LV3=VDD , Charge Pump for LCD is turn off • Take one				
60	LC1	В	Charge Pump Switch 2	0.1 µF capacitor between LC1 and LC2 off. Please refer the application circuit in order to avoid power				
		_		consumption.				
63	L V3	В	Charge Pump V3	Please refer the application circuit.				
62	L V1	В	Charge Pump V1	11				

64 68	LR[40]	В	LCD Resister level 4 ~ 0	Please refer the application circuit.
69	L VG	I	LCD Virtual Ground	Please refer the application circuit.
2	PWMP	O	PWM +ve output pin can directly drive Speaker or Buzzer for sound output.	Set the Bit2 for VOC register (PWM =1) to turn on the PWM
3	PWMN	O	PWM -ve output pin can directly drive Speaker or Buzzer for sound output.	Set the Bit2 for VOC register (PWM =1) to turn on the PWM
71	VO	Ο	D/A voice output	Set the bit1 (DA=1) of VOC register to turn on VO
72	DAO	О	D/A voice output for OP use.	Set the bit0 (OP=1) of VOC register to turn on DAO
73	OPIN	I	OPAMP Inverting pin	Set the bit1 (OP=1) register to turn on OP
74	OPIP	I	OPAMP Non-Inverting pin	Individual Op comparator
75	OPO	О	OPAMP Output pin	
82	VDD	P	Positive Power Input	
70	GND	P	Power Ground Input	


E.LCD RAM Map

Page	SEG	SEG	SEG	SEG	SEG
0	[7:0]	[15:8]	[23:16]	[31:24]	[39:32]
COM0	80H	90H	A0H	ВОН	C0H
COM1	81H	91H	A1H	B1H	C1H
COM2	82H	92H	A2H	B2H	C2H
:	:	:	:	:	:
:	• •	• •	• •	• •	:
COM13	8DH	9DH	ADH	BDH	CDH
COM14	8EH	9EH	AEH	BEH	CEH
COM15	8FH	9FH	AFH	BFH	CFH

F. Pin Diagram

G. Bonding Pad Location

PIN	PIN	X	Y	PIN	PIN	X	Y
Number	Name	Coordinate	Coordinate	Number	Name	Coordinate	Coordinate
1	PRTC[0]	X = -1475.80	Y= 1246.95	48	SEG[3]	X = 1474.30	Y = -1236.15
2	PWMP	X = -1475.80	Y= 1107.20	49	SEG[2]	X = 1474.30	Y = -1120.65
3	PWMN	X = -1475.80	Y= 943.85	50	SEG[1]	X = 1474.30	Y = -1005.15
4	COM[8]	X = -1475.80	Y = 804.75	51	SEG[0]	X = 1474.30	Y= -889.65
5	COM[9]	X = -1475.80	Y = 689.25	52	COM[7]	X = 1474.30	Y = -774.15
6	COM[10]	X = -1475.80	Y = 573.75	53	COM[6]	X = 1474.30	
7	COM[11]	X = -1475.80	Y = 458.25	54	COM[5]	X = 1474.30	
8	COM[12]	X = -1475.80	Y = 342.75	55	COM[4]	X = 1474.30	Y = -427.65
9	COM[13]	X = -1475.80	Y = 227.25	56	COM[3]	X = 1474.30	
10	COM[14]	X = -1475.80	Y= 111.75	57	COM[2]	X = 1474.30	
11	COM[15]	X = -1475.80	Y = -3.75	58	COM[1]	X = 1474.30	
12	SEG[39]	X = -1475.80	Y = -119.25	59	COM[0]	X = 1474.30	
13	SEG[38]	X = -1475.80	Y = -234.75	60	LC1	X = 1474.30	
14	SEG[37]	X = -1475.80	Y = -350.25	61	LC2	X = 1474.30	
15	SEG[36]	X = -1475.80	Y = -465.75	62	LV1	X = 1474.30	
16	SEG[35]	X = -1475.80	Y = -581.25	63	LV3	X = 1474.30	
17	SEG[34]	X = -1475.80	Y = -696.75	64	LR4	X = 1474.30	Y= 611.85
18	SEG[33]	X = -1475.80	Y = -812.25	65	LR3	X = 1474.30	
19	SEG[32]	X = -1475.80	Y = -927.75	66	LR2	X = 1474.30	
20	SEG[31]	X = -1475.80	Y = -1043.25	67	LR1	X = 1474.30	Y = 958.35
21	SEG[30]	X = -1475.80	Y = -1158.75	68	LR0	X = 1474.30	
22	SEG[29]	X = -1475.80	Y = -1274.25	69	LVG	X = 1474.30	Y = 1189.35
23	SEG[28]	X = -1475.80	Y = -1389.75	70	GND	X = 1474.30	Y = 1304.85
24	SEG[27]	X = -1475.80	Y = -1505.25	71	VO	X = 1474.30	Y = 1438.50
25	SEG[26]	X = -1155.05	Y = -1541.50	72	DAO	X = 1124.45	Y= 1539.10
26	SEG[25]	X = -1039.55	Y = -1541.50	73	OPIN	X = 990.80	Y= 1539.10
27	SEG[24]	X = -924.05	Y = -1541.50	74	OPIP	X = 875.30	Y = 1539.10
28	SEG[23]	X = -808.55	Y = -1541.50	75	OPO	X = 759.80	Y= 1539.10
29	SEG[22]	X = -693.05	Y = -1541.50	76	RSTP_N	X = 644.30	Y = 1539.10
30	SEG[21]	X = -577.55	Y = -1541.50	77	FXO	X = 528.80	Y= 1539.10
31	SEG[20]	X = -462.05	Y = -1541.50	78	FXI	X = 413.30	Y = 1539.10
32	SEG[19]	X = -346.55	Y = -1541.50	79	TSTP_P	X = 297.80	Y= 1539.10
33	SEG[18]	X = -231.05	Y = -1541.50	80	SXO	X = 182.30	Y = 1539.10
34	SEG[17]	X = -115.55	Y = -1541.50	81	SXI	X = 66.80	Y= 1539.10
35	SEG[16]	X = -0.05	Y = -1541.50	82	VDD	X = -48.70	Y= 1539.10
36	SEG[15]	X = 115.45	Y = -1541.50	83	PRTD[7]	X = -164.20	Y= 1539.10
37	SEG[14]	X = 230.95	Y = -1541.50	84	PRTD[6]	X = -279.70	Y= 1539.10
38	SEG[13]	X = 346.45	Y = -1541.50	85	PRTD[5]	X = -395.20	Y= 1539.10
39	SEG[12]	X = 461.95	Y = -1541.50	86	PRTD[4]	X = -510.70	Y= 1539.10
40	SEG[11]	X = 577.45	Y = -1541.50	87	PRTD[3]	X = -626.20	Y= 1539.10
41	SEG[10]	X = 692.95	Y = -1541.50	88	PRTD[2]	X = -741.70	Y= 1539.10
42	SEG[9]	X = 808.45	Y = -1541.50	89	PRTD[1]	X = -857.20	Y= 1539.10

43	SEG[8]	X=	923.95	Y = -1541.50	90	PRTD[0]	X = -972.70	Y=	1539.10
44	SEG[7]	X=	1039.45	Y = -1541.50	91	PRTC[3]	X = -1088.20	Y=	1539.10
45	SEG[6]	X=	1154.95	Y = -1541.50	92	PRTC[2]	X = -1203.70	Y=	1539.10
46	SEG[5]	X=	1474.30	Y = -1467.15	93	PRTC[1]	X = -1319.20	Y=	1539.10
47	SEG[4]	X=	1474.30	Y = -1351.65					

H. DC/AC Characteristics

Absolute Maximum Rating

Item	Sym.	Rating	Condition
Supply Voltage	V_{dd}	-0.5V ~ 8V	
Input Voltage	V_{in}	$-0.5V \sim V_{dd} + 0.5V$	
Output Voltage	V_{o}	$-0.5 \text{V} \sim \text{V}_{dd} + 0.5 \text{V}$	
Operating Temperature	Top	$0^{\circ}C \sim 70^{\circ}C$	
Storage Temperature	T_{st}	$-50^{\circ}\text{C} \sim 100^{\circ}\text{C}$	

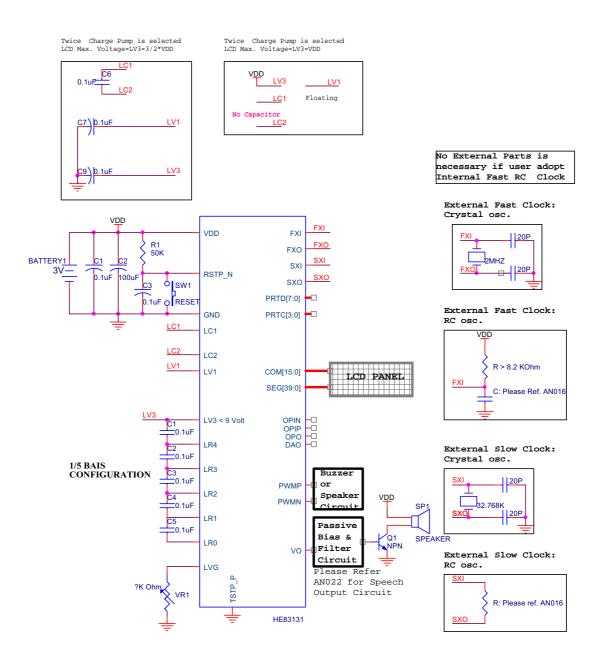
Recommended Operating Conditions

Item	Sym.	Rating	Condition
Supply Voltage	V_{dd}	2.2V ~ 5.5V	
Input Voltage	V_{ih}	$0.9~V_{dd} \sim V_{dd}$	
	V _{il}	$0.0V \sim 0.1V_{dd}$	
Operating Frequency	Fmax	8MHz	$V_{dd} = 5.0V$
		4MHz	$V_{dd} = 2.2V$
Operating Temperature	Top	$0^{0}\text{C} \sim 70^{0}\text{C}$	
Storage Temperature	T _{st}	-50° C $\sim 100^{\circ}$ C	

Test Condition: TEMP=25°C, VDD=3V+/-10%, GND=0V

	PARAMETER		CONDITION	MIN	TYP	MAX	UNIT	
I _{Fast}	NORMAL Mode Current	System	2M ext. R/C		0.75	1	mA	
I _{Slow}	SLOW Mode Current	System	32.768K X'tal		10	20	μ A	
			LCD Disable					
I _{Idle}	IDLE Mode Current	System	32.769K X'tal		6	10	μA	
			LCD Disable					
			LCD Enable,					
			LCD option=300Kohm		12	20		
I_{LCD}	Extra Current if LCD ON	System	Voltage-doubler OFF				μA	
			LCD Enable,					
			LCD option=30Kohm,	100 120		120		
			Voltage-doubler ON					
I_{Sleep}	Sleep Mode Current	System				1	$\mu \mathbf{A}$	
I_{oHPW}	PWM Output Drive Current	PWMP, PWMN ^{*2}	$V_{DD}=3V; V_{oh}=2V$	12	15		mA	
M								
I_{oLPW}	PWM Output Sink Current	PWMP, PWMN ^{*2}	$V_{DD}=3V; V_{oL}=1V$	33	40		mA	
M I _{oVO}	DAC Output Current	VO, DAO	V _{DD} =3V;VO=0~2V,Data=7F	2.5	3		mA	
$ m V_{iH}$	Input High Voltage	I/O pins		0.8			V	
		•		V_{DD}				
$ m V_{iL}$	Input Low Voltage	I/O pins				0.2	V	
		•				V_{DD}		
			Threshold=2/3V _{DD} (input from					
V_{hys}	Input Hysteresis Width	I/O, RSTP_N	low to high)		1/3		V	
,			Threshold=1/3V _{DD} (input from		V_{DD}			
			high to low)					
I_{oH}	Output Drive Current	I/O pull-high*1	$V_{oL}=2.0V$	50			μA	
$I_{oL 1}$	Output Sink Current	I/O pull-low*1	V_{oL} =0.4 V	1.0			mA	
I_{iL_1}	Input Low Current	RSTP_N	V _{iL} =GND, pull high Internally		20		μ A	
I_{iL_2}	Input Low Current	I/O	V _{iL} =GND, if pull high		100		μA	
_			Internally by user					

Note: *1: Drive Current Spec. for Push-Pull I/O port only
Sink Current Spec. for both Push-Pull and Open-Drain I/O port.


*2: This Spec. base on one driver only. There are five build-in driver, so user just multiply the number of driver he used to one driver current

to get the total amount of current.($I_{oHPWM} \cdot I_{oLPWM} * N; N=0,1,2,3,4,5$)

I. Application Circuit

