

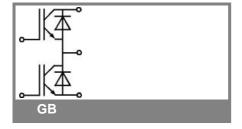
SEMITOP® 3

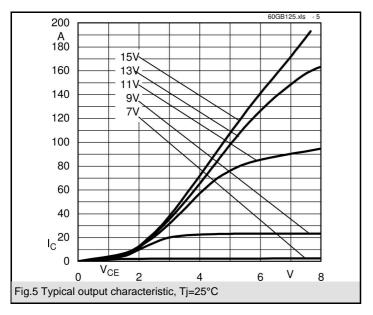
IGBT Module

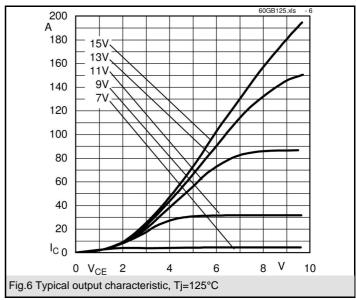
SK 60 GB 125

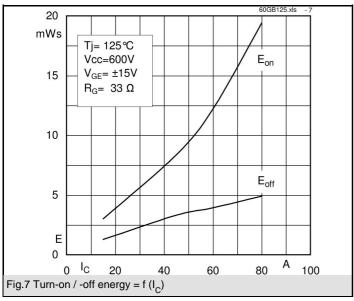
Preliminary Data

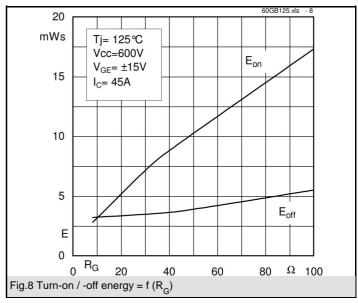
Features

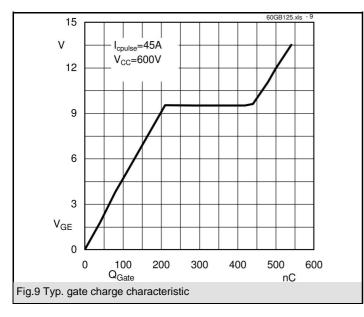

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- NPT technology
- V_{ce(sat)} with positive coefficient

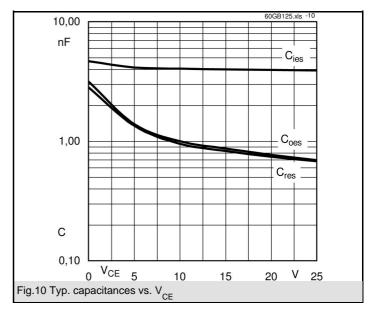

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

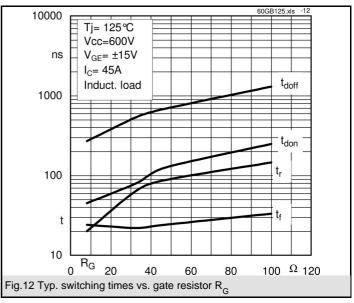

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT			•				
V_{CES}		1200	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	51 (35)	Α				
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	103 (70)	Α				
T _j		- 40 + 150	°C				
Inverse/Freewheeling CAL diode							
I _F	T _s = 25 (80) °C;	57 (38)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	114 (38)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

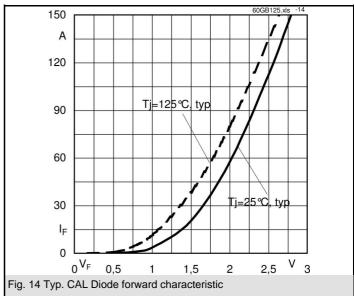

Characteristics $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{CE(sat)}	I _C = 50 A, T _i = 25 (125) °C		3,2 (3,85)		V		
$V_{GE(th)}$	$V_{CE} = V_{GE}; I_{C} = 50 \text{ A}$	4,5	5,5	6,5	V		
C _{ies}	V _{CE} = 15 V; V _{GE} = 0 V; 1 MHz		3,4		nF		
$R_{th(j-s)}$	per IGBT			0,6	K/W		
	per module				K/W		
	under following conditions:						
t _{d(on)}	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		80		ns		
t _r	I _C = 45 A, T _j = 125 °C		65		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 33 \Omega$		539		ns		
t _f			22		ns		
E _{on} + E _{off}	Inductive load		11		mJ		
Inverse\Freewheeling CAL diode							
	I _F = 50 A; T _j = 25 (125) °C		2 (1,8)		V		
V _(TO)	T _j = 125 °C		1	1,2	V		
r _T	T _j = 125 () °C		16	22	mΩ		
$R_{th(j-s)}$				0,9	K/W		
	under following conditions:						
I _{RRM}	I _F = 50 A; V _R = 600 V		40		Α		
Q _{rr}	$dI_F/dt = -800 A/\mu s$		8		μC		
E _{off}	V _{GE} = 0 V; T _j = 125 °C		2		mJ		
Mechanica	al data						
M1	mounting torque			2,5	Nm		
w			29		g		
Case	SEMITOP® 3		T 27				

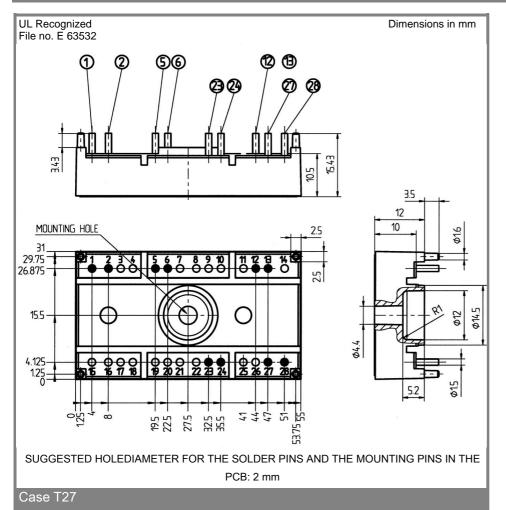


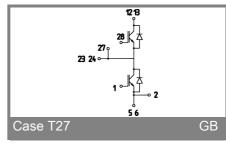












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.