
SK 9 GD 065

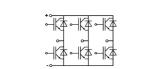
SEMITOP[®] 2

IGBT Module

SK 9 GD 065

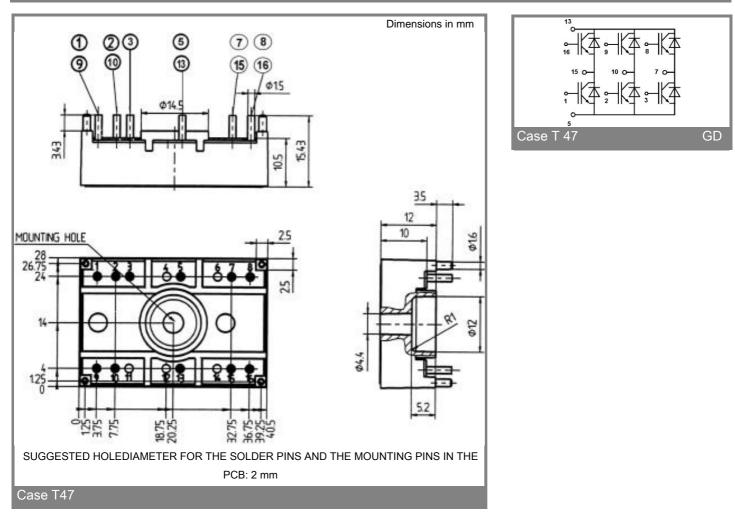
Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Absolute Maximum Ratings		T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values U					
IGBT							
V _{CES}		600	V				
V _{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	11 (8)	А				
I _{CM}	t _p < 1 ms; T _s = 25 (80) °C;	22 (16)	А				
Т _ј		- 40 + 150	°C				
Inverse/Freewheeling CAL Diode							
I _F	T _s = 25 (80) °C;	22 (15)	А				
$I_{FM} = -I_{CM}$	t _p < 1 ms; T _s = 25 (80) °C;	44 (30)	А				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

Characteristics		T _s = 25 °C	T_s = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{CE(sat)}	I _C = 6 A, T _i = 25 (125) °C		2 (2,2)	2,5 (2,7)	V		
V _{GE(th)}	$V_{CE} = V_{GE}$; $I_{C} = 0,0005 \text{ A}$	3	4	5	V		
C _{ies}	V_{CE}^{0} = 25 V; V_{GE} = 0 V; 1 MHz		0,32		nF		
R _{th(j-s)}	per IGBT			2,6	K/W		
	per module				K/W		
	under following conditions:						
t _{d(on)}	V_{CC} = 300 V , V_{GE} = ± 15 V		20		ns		
t _r	I _C = 6 A, T _j = 125 °C		25		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 120 \Omega$		145		ns		
t _f			25		ns		
$E_{on} + E_{off}$	Inductive load		0,34		mJ		
Inverse/Freewheeling CAL Diode							
	I _F = 15 A; T _i = 25 (125) °C		1,4 (1,4)	1,7 (1,7)	V		
V _(TO)	T _j = 25 (125) °C		1 (0,9)	1,1 (1)	V		
r _T	T _j = 25 (125) °C		30 (33)	40 (47)	mΩ		
R _{th(j-s)}				2,3	K/W		
	under following conditions:						
I _{RRM}	I _F = 15 A; V _R = 300 V		22		А		
Q _{rr}	dI _F /dt = 1100 A/µs		1,5		μC		
E _{off}	V _{GE} = 0 V; T _j = 125 °C		0,31		mJ		
Mechanical data							
M1	mounting torque			2	Nm		
w			21		g		
Case	SEMITOP [®] 2		T 47				

GD

SK 9 GD 065

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.