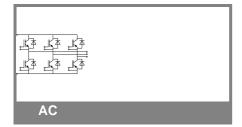

SKiiP 37AC12T4V1

3-phase bridge inverter

SKiiP 37AC12T4V1

Target Data


Features

- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

Absolute Maximum Ratings				s = 25 °C, unless otherwise specified			
Symbol	Conditions			Values	Units		
IGBT							
V _{CES}	T _j = 25 °C			1200	V		
I _C	T _j = 175 °C	T _c = 25 °C		98	Α		
		$T_c = 70 ^{\circ}C$		78	Α		
I _{CRM}	$I_{CRM} = 3xI_{Cnom}$			225	Α		
V_{GES}				±20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 150 °C		10	μs		
Inverse D	iode						
I _F	T _j = 175 °C	T_c = 25 °C		82	Α		
		$T_c = 70 ^{\circ}C$		65	Α		
I _{FRM}	$I_{CRM} = 3xI_{Cnom}$			225	Α		
I _{FSM}	$t_p = 10 \text{ ms}; \sin$	T _j = 150 °C		425	Α		
Module							
I _{t(RMS)}				160	Α		
T_{vj}				-40+150	°C		
T _{stg}				-40+125	°C		
V _{isol}	AC, 1 min.			2500	V		

Characteristics $T_s =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}, I_{C} = mA$		5	5,8	6,5	V
I _{CES}	$V_{GE} = V, V_{CE} = V_{CES}$	T _j = °C				mA
V _{CE0}		T _j = 25 °C		1,1	1,3	V
		T _j = 150 °C		1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10	10	mΩ
		T _j = 150°C		17	17	mΩ
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V			1,85	2,05	V
		$T_j = 150^{\circ}C_{chiplev}$		2,25	2,45	V
C _{ies}						nF
C _{oes}	$V_{CE} = , V_{GE} = V$	f = MHz				nF
C _{res}						nF
R_{Gint}	T _j = 25 °C			10		Ω
t _{d(on)}						ns
t _r	$R_{Gon} = 1 \Omega$	V _{CC} = V		44.5		ns
E _{on}	R _{Goff} = 1 Ω	I _{Cnom} = 75A T _i = 150 °C		11,5		mJ ns
${f t}_{\sf d(off)} \ {f t}_{\sf f}$	Goff 1 122	$V_{GE} = \pm 15V$				ns
E _{off}		GE -		7,3		mJ
R _{th(j-s)}	per IGBT			0,52		K/W

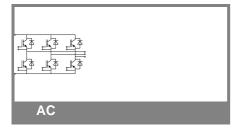
SKiiP 37AC12T4V1

3-phase bridge inverter

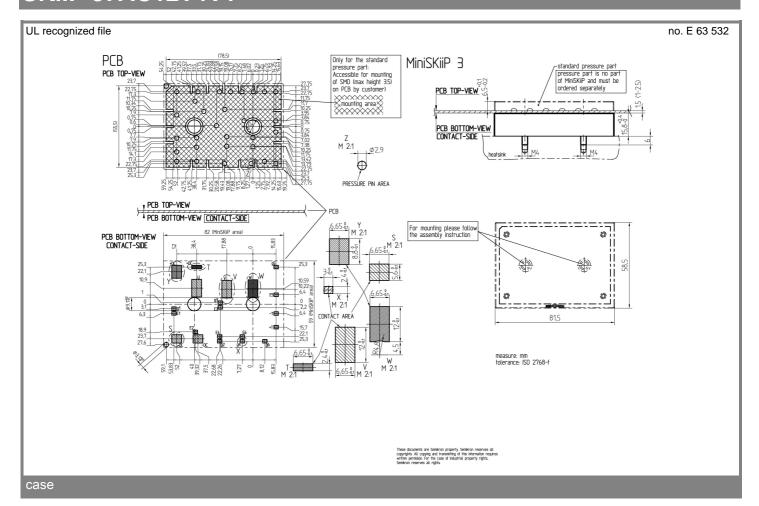
SKiiP 37AC12T4V1

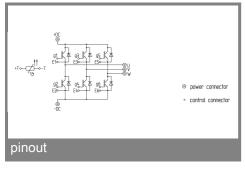
Target Data

Features


- · Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse D	Inverse Diode							
$V_F = V_{EC}$	I _{Fnom} = 75 A; V _{GE} = 15 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2,2	2,5	V		
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		2,1	2,45	V		
V _{F0}		T _j = 25 °C		1,3	1,5	V		
		T _j = 150 °C		0,9	1,1	V		
r _F		T _j = 25 °C		12	13	mΩ		
		T _j = 150 °C		16	18	mΩ		
I _{RRM}	I _{Fnom} = 75 A	T _j = 125 °C		74		Α		
Q_{rr}				13,4		μC		
E _{rr}	V _{GE} = ±15V			5,7		mJ		
$R_{th(j-s)}$	per diode			0,76		K/W		
M_s	to heat sink		2		2,5	Nm		
w				95		g		
Temperat	ure sensor							
R _{ts}	3%, Tr = 25°C			1000		Ω		
R_{ts}	3%, Tr = 100°C			1670		Ω		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SKiiP 37AC12T4V1

3 15-10-2007 SEN © by SEMIKRON