74AHC3G14; 74AHCT3G14 # Inverting Schmitt trigger Rev. 04 — 5 May 2009 **Product data sheet** #### **General description** 1. 74AHC3G14 and 74AHCT3G14 are high-speed Si-gate CMOS devices. They provide an inverting buffer function with Schmitt trigger action. These devices are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. The AHC device has CMOS input switching levels and supply voltage range 2 V to 5.5 V. The AHCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V. #### 2. **Features** - Symmetrical output impedance - High noise immunity - ESD protection: - ◆ HBM JESD22-A114E exceeds 2000 V - ◆ MM JESD22-A115-A exceeds 200 V - ◆ CDM JESD22-C101C exceeds 1000 V - Low power dissipation - Balanced propagation delays - Multiple package options - Specified from -40 °C to +125 °C #### **Applications** 3. - Wave and pulse shaper for highly noisy environment - Astable multivibrator - Monostable multivibrator ## 4. Ordering information Table 1. Ordering information | Type number | Package | Package | | | | | | | | | | |--------------|-------------------|---------|--|----------|--|--|--|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | | | | 74AHC3G14DP | –40 °C to +125 °C | TSSOP8 | plastic thin shrink small outline package; 8 leads; | SOT505-2 | | | | | | | | | 74AHCT3G14DP | | | body width 3 mm; lead length 0.5 mm | | | | | | | | | | 74AHC3G14DC | –40 °C to +125 °C | VSSOP8 | plastic very thin shrink small outline package; 8 leads; | SOT765-1 | | | | | | | | | 74AHCT3G14DC | | | body width 2.3 mm | | | | | | | | | | 74AHC3G14GD | –40 °C to +125 °C | XSON8U | placing of the control contro | | | | | | | | | | 74AHCT3G14GD | | | 8 terminals; UTLP based; body $3 \times 2 \times 0.5$ mm | | | | | | | | | ## 5. Marking Table 2. Marking codes | Type number | Marking code[1] | |--------------|-----------------| | 74AHC3G14DP | A14 | | 74AHCT3G14DP | C14 | | 74AHC3G14DC | A14 | | 74AHCT3G14DC | C14 | | 74AHC3G14GD | A14 | | 74AHCT3G14GD | C14 | ^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code. ## 6. Functional diagram ## 7. Pinning information #### 7.1 Pinning #### 7.2 Pin description Table 3. Pin description | Symbol | Pin | Description | |-----------------|---------|----------------| | 1A, 2A, 3A | 1, 3, 6 | data input | | GND | 4 | ground (0 V) | | 1Y, 2Y, 3Y | 7, 5, 2 | data output | | V _{CC} | 8 | supply voltage | ## 8. Functional description Table 4. Function table [1] | Input nA | Output nY | |----------|-----------| | L | Н | | Н | L | [1] H = HIGH voltage level; L = LOW voltage level ## 9. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|---|--------------|------|------| | V_{CC} | supply voltage | | -0.5 | +7.0 | V | | VI | input voltage | | -0.5 | +7.0 | V | | I _{IK} | input clamping current | $V_{I} < -0.5 \text{ V}$ | -20 | - | mA | | I _{OK} | output clamping current | V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V | <u>[1]</u> _ | ±20 | mA | | Io | output current | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | - | ±25 | mA | | I _{CC} | supply current | | - | 75 | mA | | I_{GND} | ground current | | -75 | - | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | $T_{amb} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ | [2] _ | 250 | mW | ^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ## 10. Recommended operating conditions Table 6. Recommended operating conditions Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | 74 | AHC3G | 14 | 74AHCT3G14 | | | Unit | | |------------------|---------------------|----|-------|-----|------------|-----|-----|----------|----| | | | | Min | Тур | Max | Min | Тур | Max | | | V_{CC} | supply voltage | | 2.0 | 5.0 | 5.5 | 4.5 | 5.0 | 5.5 | V | | V _I | input voltage | | 0 | - | 5.5 | 0 | - | 5.5 | V | | V _O | output voltage | | 0 | - | V_{CC} | 0 | - | V_{CC} | V | | T _{amb} | ambient temperature | | -40 | +25 | +125 | -40 | +25 | +125 | °C | #### 11. Static characteristics Table 7. Static characteristics Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | 25 °C | | -40 °C to +85 °C | | -40 °C to +125 °C | | Unit | |-----------|----------------|---|------|-------|-----|------------------|-----|-------------------|-----|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74AHC3G14 | | | | | | | | | | | | V_{OH} | HIGH-level | $V_I = V_{T+}$ or V_{T-} | | | | | | | | | | | output voltage | $I_O = -50 \mu A; V_{CC} = 2.0 V$ | 1.9 | 2.0 | - | 1.9 | - | 1.9 | - | V | | | | $I_O = -50 \mu A$; $V_{CC} = 3.0 V$ | 2.9 | 3.0 | - | 2.9 | - | 2.9 | - | V | | | | $I_O = -50 \mu A$; $V_{CC} = 4.5 V$ | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | V | | | | $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$ | 2.58 | - | - | 2.48 | - | 2.40 | - | V | | | | $I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$ | 3.94 | - | - | 3.8 | - | 3.70 | - | V | ^[2] For TSSOP8 package: above 55 $^{\circ}$ C the value of P_{tot} derates linearly at 2.5 mW/K. For VSSOP8 package: above 110 $^{\circ}$ C the value of P_{tot} derates linearly at 8 mW/K. For XSON8U packages: above 118 $^{\circ}$ C the value of P_{tot} derates linearly with 7.8 mW/K. **Table 7. Static characteristics** ...continued Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | 25 °C | | -40 °C | to +85 °C | -40 °C to +125 °C | | Unit | |------------------|---------------------------|--|------|-------|------|--------|-----------|-------------------|------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | V_{OL} | LOW-level | $V_I = V_{T+}$ or V_{T-} | 1 | • | | | | | | | | | output voltage | $I_O = 50 \mu A; V_{CC} = 2.0 V$ | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | $I_O = 50 \mu A; V_{CC} = 3.0 \text{ V}$ | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | $I_O = 50 \mu A; V_{CC} = 4.5 V$ | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | $I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$ | - | - | 0.36 | - | 0.44 | - | 0.55 | V | | | | $I_O = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$ | - | - | 0.36 | - | 0.44 | - | 0.55 | V | | I _I | input leakage
current | $V_I = 5.5 \text{ V or GND};$
$V_{CC} = 0 \text{ V to } 5.5 \text{ V}$ | - | - | 0.1 | - | 1.0 | - | 2.0 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$ | - | - | 1.0 | - | 10 | - | 40 | μΑ | | C _I | input
capacitance | | - | 1.5 | 10 | - | 10 | - | 10 | pF | | 74AHCT | 3G14 | | | | | | | | | | | V_{OH} | HIGH-level | $V_I = V_{T+}$ or V_{T-} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | | | | output voltage | $I_{O} = -50 \mu A$ | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | V | | | | $I_{O} = -8.0 \text{ mA}$ | 3.94 | - | - | 3.8 | - | 3.70 | - | V | | V_{OL} | LOW-level | $V_I = V_{T+}$ or V_{T-} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | | | | output voltage | $I_O = 50 \mu A$ | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | $I_0 = 8.0 \text{ mA}$ | - | - | 0.36 | - | 0.44 | - | 0.55 | V | | l _l | input leakage current | $V_I = 5.5 \text{ V or GND};$
$V_{CC} = 0 \text{ V to } 5.5 \text{ V}$ | - | - | 0.1 | - | 1.0 | - | 2.0 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A;
$V_{CC} = 5.5 \text{ V}$ | - | - | 1.0 | - | 10 | - | 40 | μΑ | | Δl _{CC} | additional supply current | per input pin; $V_I = 3.4 \text{ V}$;
other inputs at V_{CC} or GND;
$I_O = 0 \text{ A}$; $V_{CC} = 5.5 \text{ V}$ | - | - | 1.35 | - | 1.5 | - | 1.5 | mA | | Cı | input
capacitance | | - | 1.5 | 10 | - | 10 | - | 10 | pF | #### 11.1 Transfer characteristics Table 8. Transfer characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). See Figure 8 and Figure 9. | Symbol | Parameter | Conditions | | 25 °C | | -40 °C | to +85 °C | –40 °C t | o +125 °C | Unit | |-------------------------------|--|--------------------------|------|-------|------|--------|-----------|----------|-----------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74AHC3 | G14 | | | ' | | | | | ' | | | V_{T+} | positive-going
threshold
voltage | $V_{CC} = 3.0 \text{ V}$ | - | - | 2.2 | - | 2.2 | - | 2.2 | V | | | | $V_{CC} = 4.5 \text{ V}$ | - | - | 3.15 | - | 3.15 | - | 3.15 | V | | | voltage | $V_{CC} = 5.5 V$ | - | - | 3.85 | - | 3.85 | - | 3.85 | V | | V _T negative-going | $V_{CC} = 3.0 \text{ V}$ | 0.9 | - | - | 0.9 | - | 0.9 | - | V | | | | threshold | $V_{CC} = 4.5 \text{ V}$ | 1.35 | - | - | 1.35 | - | 1.35 | - | V | | voltage | voitage | $V_{CC} = 5.5 \text{ V}$ | 1.65 | - | - | 1.65 | - | 1.65 | - | V | | V_{H} | ' _H hysteresis | $V_{CC} = 3.0 \text{ V}$ | 0.3 | - | 1.2 | 0.3 | 1.2 | 0.25 | 1.2 | V | | | voltage | $V_{CC} = 4.5 \text{ V}$ | 0.4 | - | 1.4 | 0.4 | 1.4 | 0.35 | 1.4 | V | | | | $V_{CC} = 5.5 \text{ V}$ | 0.5 | - | 1.6 | 0.5 | 1.6 | 0.45 | 1.6 | V | | 74AHCT | 3G14 | | | | | | | | | | | V _{T+} | positive-going | $V_{CC} = 4.5 \text{ V}$ | - | - | 2.0 | - | 2.0 | - | 2.0 | V | | | threshold voltage | $V_{CC} = 5.5 \text{ V}$ | - | - | 2.0 | - | 2.0 | - | 2.0 | V | | V_{T-} | negative-going | $V_{CC} = 4.5 \text{ V}$ | 0.5 | - | - | 0.5 | - | 0.5 | - | V | | threshold
voltage | | $V_{CC} = 5.5 \text{ V}$ | 0.6 | - | - | 0.6 | - | 0.6 | - | V | | V_{H} | hysteresis | $V_{CC} = 4.5 \text{ V}$ | 0.4 | - | 1.4 | 0.4 | 1.4 | 0.35 | 1.4 | V | | | voltage | $V_{CC} = 5.5 \text{ V}$ | 0.4 | - | 1.6 | 0.4 | 1.6 | 0.35 | 1.6 | V | ## 12. Dynamic characteristics Table 9. Dynamic characteristics $GND = 0 \ V; t_r = t_f \le 3.0 \ ns;$ for test circuit see Figure 7. | Symbol | Parameter | Conditions | | | 25 °C | | -40 °C t | to +85 °C | -40 °C to +125 °C | | Unit | |---------------|-------------------------------------|---|------------|-----|-------|------|----------|-----------|-------------------|------|------| | | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74AHC3 | G14 | | | | | | | | | | | | ρω . | propagation | nA to nY; see Figure 6 | <u>[1]</u> | | | | | | | | | | | delay | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ | [2] | | | | | | | | | | | | C _L = 15 pF | | - | 4.2 | 12.8 | 1.0 | 15.0 | 1.0 | 16.5 | ns | | | | $C_L = 50 pF$ | | - | 6.0 | 16.3 | 1.0 | 18.5 | 1.0 | 20.5 | ns | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | [3] | | | | | | | | | | | | $C_L = 15 pF$ | | - | 3.2 | 8.6 | 1.0 | 10.0 | 1.0 | 11.0 | ns | | | | $C_L = 50 pF$ | | - | 4.6 | 10.6 | 1.0 | 12.0 | 1.0 | 13.5 | ns | | C_{PD} | power
dissipation
capacitance | per buffer;
$C_L = 50 \text{ pF}$; $f_i = 1 \text{ MHz}$;
$V_I = \text{GND to } V_{CC}$ | <u>[4]</u> | - | 10 | - | - | - | - | - | pF | Table 9. Dynamic characteristics ...continued $GND = 0 \ V; t_r = t_f \le 3.0 \ ns;$ for test circuit see Figure 7. | Symbol | Parameter | Parameter Conditions | | 25 °C | | -40 °C to +85 °C | | –40 °C t | o +125 °C | Unit | | |-----------------------------------|---|---|------------|-------|-----|------------------|-----|----------|-----------|------|----| | | | | | Min | Тур | Max | Min | Max | Min | Max | | | 74AHCT3G14 | | | | | | | | | | | | | t _{pd} propagation delay | nA to nY;
V _{CC} = 4.5 V to 5.5 V | [1]
[3] | | | | | | | | | | | | | C _L = 15 pF | | - | 4.1 | 7.0 | 1.0 | 8.0 | 1.0 | 9.0 | ns | | | | $C_L = 50 pF$ | | - | 5.9 | 8.5 | 1.0 | 10.0 | 1.0 | 11.0 | ns | | C_{PD} | power
dissipation
capacitance | per buffer;
$C_L = 50 \text{ pF}$; $f_i = 1 \text{ MHz}$;
$V_I = \text{GND to } V_{CC}$ | <u>[4]</u> | - | 12 | - | - | - | - | - | pF | - [1] t_{pd} is the same as t_{PLH} and t_{PHL} . - [2] Typical values are measured at $V_{CC} = 3.3 \text{ V}$. - [3] Typical values are measured at $V_{CC} = 5.0 \text{ V}$. - [4] C_{PD} is used to determine the dynamic power dissipation P_D (μW). $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs. #### 13. Waveforms The test data is given in Table 10 Test data is given in Table 10. Definitions for test circuit: C_L = Load capacitance. R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator. Fig 7. Load circuit for measuring switching times Fig 6. The input (nA) to output (nY) propagation delays #### Table 10. Test data | Type number | Input | Output | | |-------------|------------------------|---------------------|---------------------| | | VI | V _M | V _M | | 74AHC3G14 | GND to V _{CC} | $0.5 \times V_{CC}$ | $0.5 \times V_{CC}$ | | 74AHCT3G14 | GND to 3.0 V | 1.5 V | $0.5 \times V_{CC}$ | #### 13.1 Transfer characteristic waveforms ## 14. Application information The slow input rise and fall times cause additional power dissipation, which can be calculated using the following formula: $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$ where: P_{add} = additional power dissipation (μW); f_i = input frequency (MHz); t_r = input rise time (ns); 10 % to 90 %; t_f = input fall time (ns); 90 % to 10 %; $\Delta I_{CC(AV)}$ = average additional supply current (μA). $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in Figure 15 and Figure 16. For 74AHC3G14 and 74AHCT3G14 used in relaxation oscillator circuit, see Figure 17. #### Note to the application information: 1. All values given are typical unless otherwise specified. Linear change of V_{I} between $0.1V_{CC}$ to $0.9V_{CC}$ Fig 15. Average additional I_{CC} for 74AHC3G14 Schmitt trigger devices Linear change of V_{I} between $0.1V_{CC}$ to $0.9V_{CC}$ Fig 16. Average additional I_{CC} for 74AHCT3G14 Schmitt trigger devices For 74AHC3G14: $$f = \frac{I}{T} \approx \frac{I}{0.55 \times RC}$$ For 74AHCT3G14: $$f = \frac{1}{T} \approx \frac{1}{0.60 \times RC}$$ Fig 17. Relaxation oscillator using the 74AHC3G14 and 74AHCT3G14 ## 15. Package outline TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2 | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|-----|-------|----------|------------|------------|------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | SOT505-2 | | | | | | 02-01-16 | | | | | | | | | | | Fig 18. Package outline SOT505-2 (TSSOP8) #### VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm SOT765-1 | UNIT | A
max. | A ₁ | A ₂ | А3 | bp | С | D ⁽¹⁾ | E ⁽²⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | |------|-----------|----------------|----------------|------|--------------|--------------|------------------|------------------|-----|------------|-----|--------------|--------------|-----|------|-----|------------------|----------| | mm | 1 | 0.15
0.00 | 0.85
0.60 | 0.12 | 0.27
0.17 | 0.23
0.08 | 2.1
1.9 | 2.4
2.2 | 0.5 | 3.2
3.0 | 0.4 | 0.40
0.15 | 0.21
0.19 | 0.2 | 0.13 | 0.1 | 0.4
0.1 | 8°
0° | #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|-----|--------|----------|------------|------------|------------|--| | VERSION | IEC | JEDEC | JEITA | | PROJECTION | ISSUE DATE | | | SOT765-1 | | MO-187 | | | | 02-06-07 | | Fig 19. Package outline SOT765-1 (VSSOP8) Fig 20. Package outline SOT996-2 (XSON8U) ## 16. Abbreviations #### Table 11. Abbreviations | Acronym | Description | |---------|---| | CDM | Charged Device Model | | CMOS | Complementary Metal-Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | HBM | Human Body Model | | MM | Machine Model | | TTL | Transistor-Transistor Logic | ## 17. Revision history #### Table 12. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |------------------|---|-----------------------------------|----------------------|---------------------------| | 74AHC_AHCT3G14_4 | 20090505 | Product data sheet | - | 74AHC_AHCT3G14_3 | | Modifications: | <u>Table 7</u>: the been change | conditions for HIGH-level outped. | out voltage and LOW- | level output voltage have | | 74AHC_AHCT3G14_3 | 20080617 | Product data sheet | - | 74AHC_AHCT3G14_2 | | 74AHC_AHCT3G14_2 | 20041018 | Product specification | - | 74AHC_AHCT3G14_1 | | 74AHC_AHCT3G14_1 | 20031127 | Product specification | - | - | ## 18. Legal information #### 18.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 18.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. #### 18.3 Disclaimers **General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. #### 18.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 19. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com #### 20. Contents | 1 | General description | |------|-------------------------------------| | 2 | Features | | 3 | Applications | | 4 | Ordering information | | 5 | Marking 2 | | 6 | Functional diagram 2 | | 7 | Pinning information 3 | | 7.1 | Pinning | | 7.2 | Pin description | | 8 | Functional description 3 | | 9 | Limiting values 4 | | 10 | Recommended operating conditions 4 | | 11 | Static characteristics 4 | | 11.1 | Transfer characteristics 6 | | 12 | Dynamic characteristics 6 | | 13 | Waveforms | | 13.1 | Transfer characteristic waveforms 8 | | 14 | Application information 9 | | 15 | Package outline 11 | | 16 | Abbreviations14 | | 17 | Revision history | | 18 | Legal information | | 18.1 | Data sheet status | | 18.2 | Definitions | | 18.3 | Disclaimers | | 18.4 | Trademarks15 | | 19 | Contact information 15 | | 20 | Contents 16 | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.