

PMEM1505PG

PNP transistor/Schottky rectifier module Rev. 02 — 31 August 2009

Product data sheet

Product profile

1.1 General description

Combination of an PNP transistor with low V_{CEsat} and high current capability and a planar Schottky barrier rectifier with an integrated guard ring for stress protection in a SOT353 (SC-88A) small plastic package. NPN complement: PMEM1505NG

1.2 Features

- 300 mW total power dissipation
- Current capability up to 0.5 A
- Reduces printed-circuit board area required
- Reduces pick and place costs
- Small plastic SMD package
- Transistor
 - Low collector-emitter saturation voltage
- - Ultra high-speed switching
 - Very low forward voltage
 - Guard ring protected

1.3 Applications

- DC-to-DC converters
- General purpose load drivers
- MOSFET drivers

- Inductive load drivers
- Reverse polarity protection circuits

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
PNP trans	istor						
V_{CEO}	collector-emitter voltage	open base		-	-	-15	V
I _C	collector current (DC)	continuous	<u>[1]</u>	-	-	-0.5	Α
Schottky b	parrier rectifier						
V_R	continuous reverse voltage			-	-	20	V
I _F	continuous forward current			-	-	0.5	Α

^[1] Mounted on a FR4 printed-circuit board, single-sided copper, tin-plated, standard footprint for SOT353.

2. Pinning information

Table 2. Discrete pinning

I GOIO E.	Discrete pirining		
Pin	Description	Simplified outline	Symbol
1	anode	D- D.	
5	cathode	<u> </u>	3 2 1
4	collector		
2	base		
3	emitter	<u> </u>	
			4 5
			sym024

3. Ordering information

Table 3. Ordering information

Type number	Package	Package			
	Name	Description	Version		
PMEM1505PG	-	plastic surface mounted package; 5 leads	SOT353		

4. Marking

Table 4. Marking

Type number	Marking code[1]
PMEM1505PG	L6*

[1] * = p: made in Hong Kong

* = t: made in Malaysia

* = W: made in China

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
PNP trans	istor					
V_{CBO}	collector-base voltage	open emitter		-	–15	V
V_{CEO}	collector-emitter voltage	open base		-	–15	V
V_{EBO}	emitter-base voltage	open collector		-	-6	V
I _C	collector current (DC)	continuous	[1]	-	-0.5	Α
		continuous	[2]	-	-0.6	Α
		continuous; $T_s \le 55$ °C	[3]	-	-1	A
I _{CM}	peak collector current			-	-1	Α
I _{BM}	peak base current			-	-100	mA

PMEM1505PG_2 © NXP B.V. 2009. All rights reserved.

Table 5. Limiting values ...continued
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
P _{tot}	total power dissipation	$T_{amb} \le 25 ^{\circ}C$	<u>[1]</u>	-	200	mW
		T _{amb} ≤ 25 °C	[2]	-	250	mW
		T _s ≤ 55 °C	[3]	-	800	mW
Tj	junction temperature			-	150	°C
Schottky I	parrier rectifier					
V_R	continuous reverse voltage			-	20	V
l _F	continuous forward current			-	0.5	Α
I _{FSM}	non-repetitive peak forward current	t = 8.3 ms square wave		-	5	Α
P _{tot}	total power dissipation	$T_{amb} \le 25 ^{\circ}C$	<u>[1]</u>	-	200	mW
		T _{amb} ≤ 25 °C	[2]	-	250	mW
		T _s ≤ 55 °C	[3]	-	800	mW
Tj	junction temperature		[2]	-	125	°C
Combined	l device					
P _{tot}	total power dissipation	$T_{amb} \le 25 ^{\circ}C$	[2]	-	300	mW
T _{stg}	storage temperature			-65	+150	°C
T _{amb}	operating ambient temperature		[2]	-65	+150	°C

^[1] Mounted on a FR4 printed-circuit board, single-sided copper, tin-plated, standard footprint for SOT353.

6. Thermal characteristics

Table 6. Thermal characteristics[1]

Symbol	Parameter	Conditions		Тур	Unit
Single dev	vice				
R _{th(j-s)}	from junction to solder point	in free air	[2]	120	K/W
R _{th(j-a)}	from junction to ambient	in free air	[3]	395	K/W
			[4]	495	K/W
Combined	d device				
R _{th(j-a)}	from junction to ambient	in free air	<u>[5]</u>	410	K/W

^[1] For Schottky barrier rectifiers thermal run-away has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses. Nomograms for determining the reverse power losses P_R and $I_{F(AV)}$ rating will be available on request.

^[2] Device mounted on a printed-circuit board, single-sided copper, tin-plated, 1cm² mounting pad for both collector and cathode.

^[3] Solder point of collector or cathode tab.

^[2] Solder point of collector or cathode tab.

^[3] Device mounted on a printed-circuit board, single-sided copper, tin-plated, 1cm² mounting pad for both collector and cathode.

^[4] Mounted on a FR4 printed-circuit board, single-sided copper, tin-plated, standard footprint for SOT353.

^[5] Mounted on a ceramic printed-circuit board, single-sided copper, tin-plated, standard footprint.

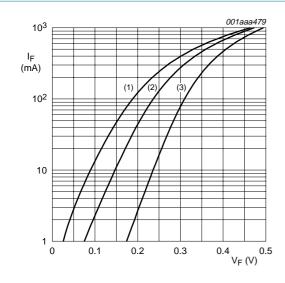
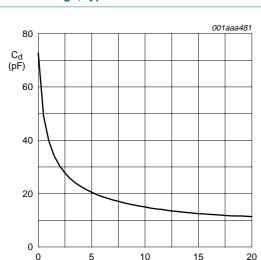

7. Characteristics

Table 7. Characteristics

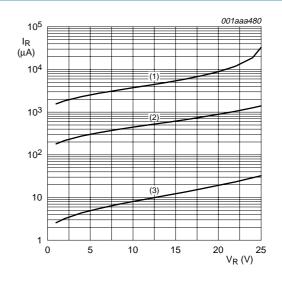
T_{amb} = 25 °C unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
PNP trans	istor						
I _{CBO}	collector-base cut-off	$V_{CB} = -15 \text{ V}; I_E = 0 \text{ A}$		-	-	-100	nA
current		$V_{CB} = -15 \text{ V}; I_E = 0 \text{ A};$ $T_j = 150 \text{ °C}$		-	-	–50	μΑ
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V}; I_C = 0 \text{ A}$		-	-	-100	nA
h _{FE}	DC current gain	$V_{CE} = -2 \text{ V}; I_{C} = -10 \text{ mA}$		200	-	-	
		$V_{CE} = -2 \text{ V}; I_{C} = -100 \text{ mA}$		150	-	-	
		$V_{CE} = -2 \text{ V}; I_{C} = -500 \text{ mA}$		90	-	-	
V _{CEsat}	collector-emitter	$I_C = -10 \text{ mA}; I_B = -0.5 \text{ mA}$	<u>[1]</u>	-	-	-25	mV
	saturation voltage	$I_C = -200 \text{ mA}; I_B = -10 \text{ mA}$		-	-	-150	mV
		$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$		-	-	-250	mV
R _{CEsat}	equivalent on-resistance	$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	<u>[1]</u>	-	300	< 500	mΩ
V_{BEsat}	base-emitter saturation voltage	$I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$	<u>[1]</u>	-	-	-1.1	V
V_{BEon}	base-emitter turn-on voltage	$V_{CE} = -2 \text{ V}; I_{C} = -100 \text{ mA}$	<u>[1]</u>	-	-	-0.9	V
f _T	transition frequency	$V_{CE} = -10 \text{ V}; I_{C} = -50 \text{ mA};$ f = 100 MHz	<u>[1]</u>	100	280	-	MHz
C _c	collector capacitance	$V_{CB} = -10 \text{ V}; I_E = I_e = 0 \text{ A};$ f = 1 MHz		-	4.4	10	pF
Schottky I	parrier rectifier						
V _F	continuous forward	see Figure 1					
	voltage	I _F = 10 mA	<u>[1]</u>	-	240	270	mV
		I _F = 100 mA	<u>[1]</u>	-	300	350	mV
		I _F = 500 mA	<u>[1]</u>	-	400	460	mV
		I _F = 1000 mA	<u>[1]</u>	-	480	550	mV
I _R	reverse current	see Figure 2					
		V _R = 5 V	<u>[1]</u>	-	5	10	μΑ
		V _R = 8 V	<u>[1]</u>	-	7	20	μΑ
		V _R = 15 V	<u>[1]</u>	-	10	50	μΑ
C _d	diode capacitance	V _R = 5 V; f = 1 MHz; see Figure 3		-	19	25	pF


^[1] Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02$

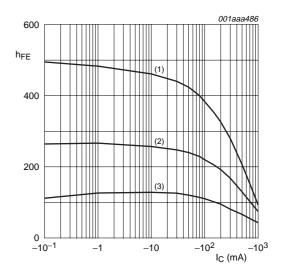
Schottky barrier rectifier

- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) $T_{amb} = 85 \,^{\circ}C$
- (3) $T_{amb} = 25 \, ^{\circ}C$


Fig 1. Forward current as a function of forward voltage; typical values

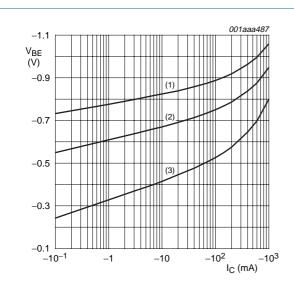
Schottky barrier rectifier; f = 1 MHz; T_{amb} = 25 °C

V_R (V)


Fig 3. Diode capacitance as a function of reverse voltage; typical values

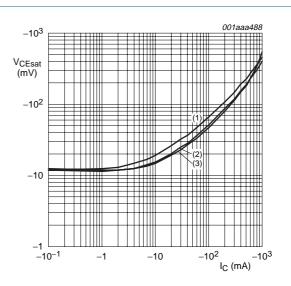
Schottky barrier rectifier

- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) $T_{amb} = 85 \, ^{\circ}C$
- (3) $T_{amb} = 25 \, ^{\circ}C$


Fig 2. Reverse current as a function of reverse voltage; typical values

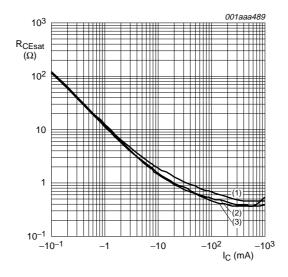
PNP transistor; $V_{CE} = -2 \text{ V}$

- (1) $T_{amb} = 150 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -55 \, ^{\circ}C$


Fig 4. DC current gain as a function of collector current; typical values

PNP transistor; $V_{CE} = -2 \text{ V}$

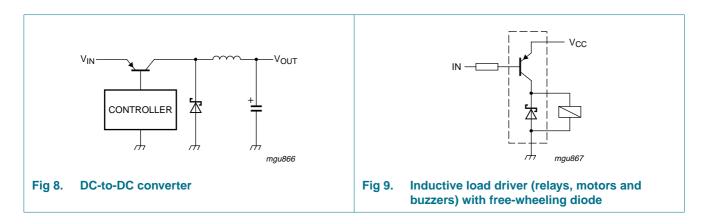
- (1) $T_{amb} = -55 \,^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = 150 \, ^{\circ}C$


Fig 5. Base-emitter voltage as a function of collector current; typical values

PNP transistor; $I_C/I_B = 20$

- (1) $T_{amb} = 150 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -55 \, ^{\circ}C$

Fig 6. Collector-emitter saturation voltage as a function of collector current; typical values



PNP transistor; $V_{CE} = -2 \text{ V}$

- (1) $T_{amb} = 150 \, ^{\circ}C$
- (2) $T_{amb} = 25 \, ^{\circ}C$
- (3) $T_{amb} = -55 \, ^{\circ}C$

Fig 7. Equivalent on-resistance as a function of collector current; typical values

8. Application information

9. Package outline

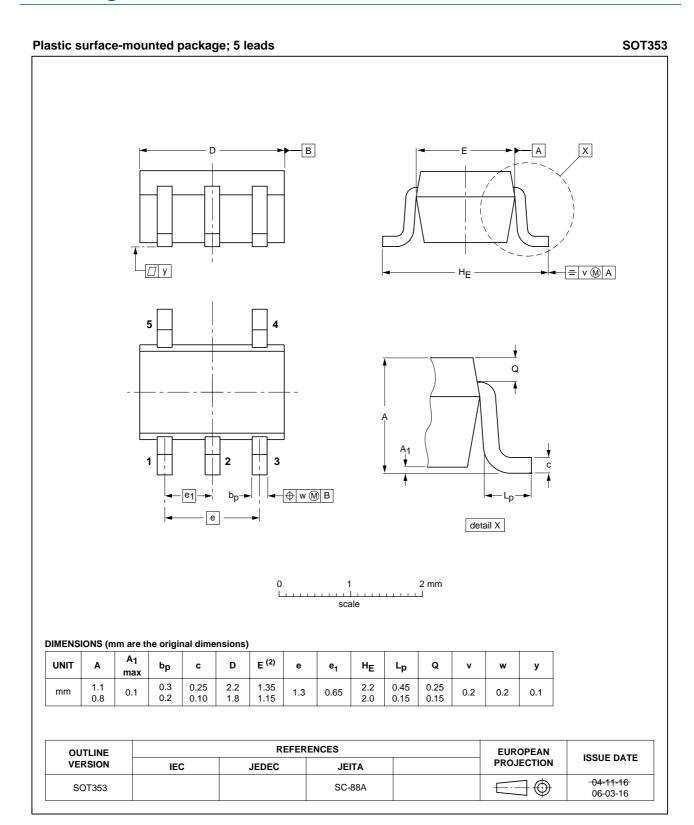


Fig 10. Package outline

10. Revision history

Table 8. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PMEM1505PG_2	20090831	Product data	-	PMEM1505PG_1
Modifications:	 This data sheet was changed to reflect the new company name NXP Semicondu- including new legal definitions and disclaimers. No changes were made to the tec- content. 			
	 Table 2 "Disc 	crete pinning": amended		
	Figure 10 "P	ackage outline": updated		
PMEM1505PG_1	20040526	Product data	-	-

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

11.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

12. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PMEM1505PG_2 © NXP B.V. 2009. All rights reserved.

PMEM1505PG

PNP transistor/Schottky rectifier module

13. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values
6	Thermal characteristics 3
7	Characteristics 4
8	Application information 7
9	Package outline 8
10	Revision history 9
11	Legal information
11.1	Data sheet status
11.2	Definitions
11.3	Disclaimers
11.4	Trademarks
12	Contact information 10
13	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

