

EFA240BV-100P

Low Distortion GaAs Power FET

ISSUED 09/28/2007

- NON-HERMETIC 100MIL METAL FLANGE PACKAGE
- +31.0dBm TYPICAL OUTPUT POWER
- 8.5dB TYPICAL POWER GAIN AT 12GHz
- 0.3 X 2400 MICRON RECESSED "MUSHROOM" GATE
- Si₃N₄ PASSIVATION
- ADVANCED EPITAXIAL DOPING PROFILE PROVIDES HIGH POWER EFFICIENCY, LINEARITY AND RELIABILITY

ELECTRICAL CHARACTERISTICS (T_a = 25 °C)

SYMBOLS	PARAMETERS/TEST CONDITIONS		MIN	TYP	MAX	UNIT
P _{1dB}		f= 12GHz f= 18GHz	29.0	31.0 31.0		dBm
G _{1dB}		f= 12GHz f= 18GHz	7	8.5 6.0		dB
PAE	Power Added Efficiency at 1dB Compression V _{DS} =8V, I _{DS} =50% I _{DSS} f=12GHz			33		%
I _{DSS}	Saturated Drain Current V _{DS} =3V	V _{GS} =0V	400	680	880	mA
Gm	Transconductance V _{DS} =3V	V _{GS} =0V	280	360		mS
Vp	Pinch-off Voltage V _{DS} =3V	I _{DS} =6mA		-2.0	-3.5	V
BV_GD	Drain Breakdown Voltage I _{GD} =2.4r	nΑ	-13	-15		V
BV _{GS}	Source Breakdown Voltage I _{GS} =2.4r	nA	-7	-14		V
Rth	Thermal Resistance (Au-Sn Eutectic Attach)			15		°C/W

Note: * Overall Rth depends on case mounting.

MAXIMUM RATINGS AT 25°C

SYMBOLS	PARAMETERS	ABSOLUTE ¹	CONTINUOUS ²
$V_{ extsf{DS}}$	Drain-Source Voltage	12V	8V
V_{GS}	Gate-Source Voltage	-8V	-4V
lgf	Forward Gate Current	60 mA	10 mA
lgr	Reverse Gate Current	-1.8 mA	-0.6 mA
Pin	Input Power	29 dBm	@ 3dB Compression
Tch	Channel Temperature	175°C	175°C
Tstg	Storage Temperature	-65/175°C	-65/175°C
Pt	Total Power Dissipation	9.1 W	7.6 W

Note: 1. Exceeding any of the above ratings may result in permanent damage.

2. Exceeding any of the above ratings may reduce MTTF below design goals.

EFA240BV-100P

Low Distortion GaAs Power FET

ISSUED 09/28/2007

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

AS HERE IN:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.