N-Channel Power MOSFET 1.8 Ω , 600 Volts

Features

- Low ON Resistance
- Low Gate Charge
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications

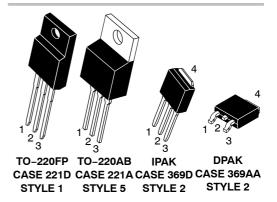
- Adapter (Notebook, Printer, Gaming)
- LCD Panel Power
- Lighting Ballasts

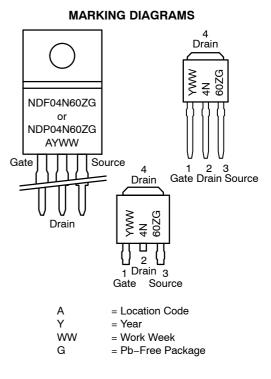
ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	NDF	NDD/NDP	Unit	
Drain-to-Source Voltage	V _{DSS}	600 (Note 1)		V	
Continuous Drain Current	I _D	4.0 (Note 2)	А	
Continuous Drain Current T _A = 100°C	Ι _D	2.7 (Note 2)		A	
Pulsed Drain Current, V _{GS} @ 10V	I _{DM}	14 (Note 2)	А	
Power Dissipation (Note 1)	PD	28	95	W	
Gate-to-Source Voltage	V _{GS}	:	±30	V	
Single Pulse Avalanche Energy, L = 6.4 mH, I_D = 4.0 A	E _{AS}	51		mJ	
ESD (HBM) (JESD 22-114-B)	V _{esd}	2500		V	
RMS Isolation Voltage (t = 0.3 sec., R.H. ≤ 30%, T _A = 25°C) (Figure 13)	V _{ISO}	4500	-	V	
Peak Diode Recovery	dv/dt	4.5 (Note 3)		V/ns	
Continuous Source Current (Body Diode)	I _S	4.0		A	
Maximum Temperature for Soldering Leads, 0.063" (1.6 mm) from Case for 10 s Package Body for 10 s	T _L T _{PKG}	300 260		°C	
Operating Junction and Storage Temperature Range	T _J , T _{stg} –55 to 150		to 150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface mounted on FR4 board using 1" sq. pad size, 1 oz cu


- 2. Limited by maximum junction temperature
- 3. $I_{SD} = 4.0$ Å, di/dt ≤ 100 Å/µs, $V_{DD} \leq BV_{DSS}$, $T_J = +150^{\circ}C$



ON Semiconductor®

http://onsemi.com

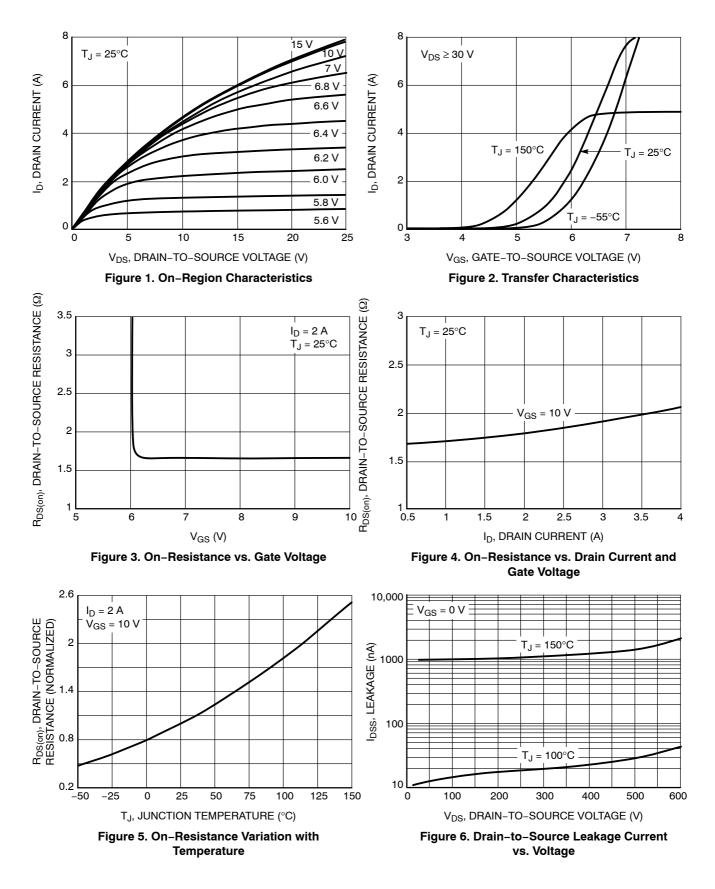
V _{DSS}	R _{DS(ON)} (TYP) @ 2 A
- 033	
600 V	1.8 Ω

ORDERING INFORMATION

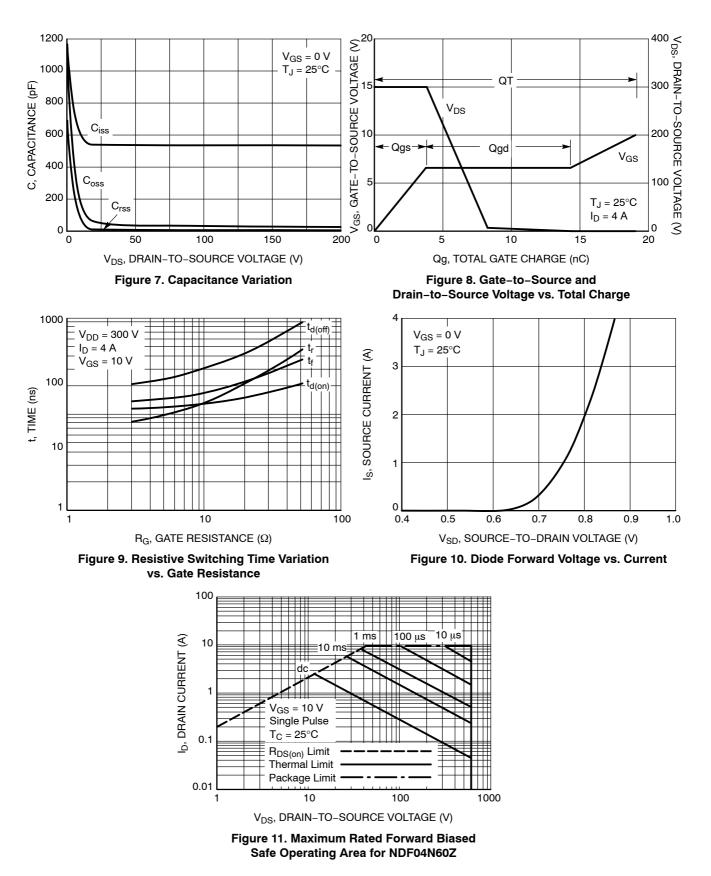
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE

Parameter	Symbol	NDF04N60Z	NDD/NDP	Unit
Junction-to-Case (Drain)		4.4	1.3	°C/W
Junction-to-Ambient Steady State (Note 4)		50	50	


ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

BV _{DS} ΔBV _D ΔΤ		 T	 T	
ΔBV _D	50		T	
_	1			V
		0.6		V/°C
5°C I _{DS}	S		1	μA
50°C			50	1
I _{GS}	S		±10	μA
	-	-		-
R _{DS(0}	on)	1.8	2.0	Ω
V _{GS(}	_{th)} 3.0		4.5	V
9FS	3	3.3		S
	-	-		-
Ciss	6	535		pF
Cos	s	62		
Crs	s	14		
Qg		19		nC
Qgs	3	3.9		1
Qgd	Ŀ	10		
Rg		4.7		Ω
	-	-		-
t _{d(or}	ו)	13		ns
t _r		9.0		1
t _{d(of}	f)	24		1
t _f		15		1
	IGSS RDS(VGS(9FS Cos Cos Crs: Qg Qg Qg Qg Qg Cg td(or	$\begin{array}{c c} I_{GSS} \\ \hline R_{DS(on)} \\ \hline V_{GS(th)} & 3.0 \\ \hline g_{FS} \\ \hline C_{iss} \\ \hline C_{oss} \\ \hline C_{rss} \\ \hline C_{rss} \\ \hline Q_{g} \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \hline R_{g} \\ \hline \end{array}$	$\begin{tabular}{ c c c c } \hline I_{GSS} & & & & & \\ \hline R_{DS(on)} & & 1.8 & & \\ \hline V_{GS(th)} & 3.0 & & & \\ \hline V_{GS(th)} & 3.0 & & & \\ \hline g_{FS} & 3.3 & & \\ \hline g_{FS} & 535 & & \\ \hline C_{oss} & 535 & & \\ \hline C_{oss} & 62 & & \\ \hline C_{rss} & 14 & & \\ \hline Q_g & 19 & & \\ \hline Q_{gs} & 3.9 & & \\ \hline Q_{gd} & 10 & & \\ \hline Q_{gd} & 10 & & \\ \hline R_g & 4.7 & & \\ \hline \hline t_{d(off)} & 13 & & \\ \hline t_{d(off)} & 24 & & \\ \hline \end{tabular}$	$\begin{array}{ c c c c c } I_{GSS} & & \pm 10 \\ \hline I_{GSS} & & \pm 10 \\ \hline R_{DS(on)} & 1.8 & 2.0 \\ \hline V_{GS(th)} & 3.0 & 4.5 \\ \hline 9_{FS} & 3.0 & 4.5 \\ \hline 9_{FS} & 3.3 & & \\ \hline \\ \hline \\ C_{iss} & 535 & & \\ \hline \\ C_{oss} & 62 & & \\ \hline \\ \hline \\ C_{rss} & 14 & & \\ \hline \\ C_{rss} & 14 & & \\ \hline \\ \hline \\ Q_{g} & 19 & & \\ \hline \\ Q_{gs} & 3.9 & & \\ \hline \\ Q_{gd} & 10 & & \\ \hline \\ R_{g} & 4.7 & & \\ \hline \\ \hline \\ \hline \\ t_{d(off)} & 13 & & \\ \hline \\ t_{d(off)} & 24 & & \\ \hline \\ t_{f} & 15 & & \\ \hline \end{array}$


Diode Forward Voltage	$I_{S} = 4.0 \text{ A}, V_{GS} = 0 \text{ V}$	V_{SD}		1.6	V
Reverse Recovery Time	$V_{GS} = 0 V, V_{DD} = 30 V$	t _{rr}	285		ns
Reverse Recovery Charge	$I_{S} = 4.0 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	Q _{rr}	1.3		μC

4. Insertion mounted 5. Pulse Width \leq 380 μ s, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

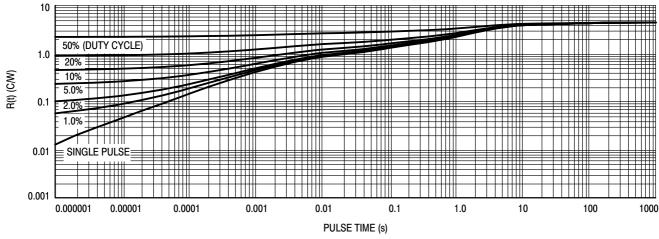
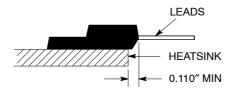
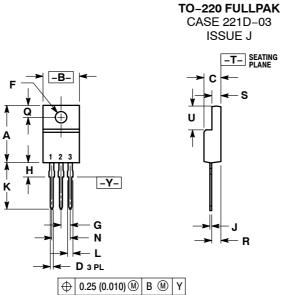
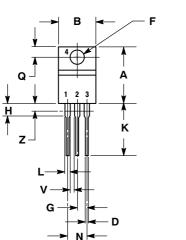



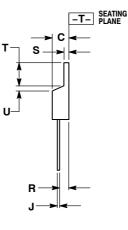
Figure 12. Thermal Impedance for NDF04N60Z

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NDF04N60ZG	TO-220FP (Pb-Free)	50 Units / Rail
NDP04N60ZG	TO-220AB (Pb-Free)	In Development
NDD04N60Z-1G	IPAK (Pb-Free)	In Development
NDD04N60ZG	DPAK (Pb-Free)	In Development


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.




Measurement made between leads and heatsink with all leads shorted together.

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE AE**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH 3. 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.

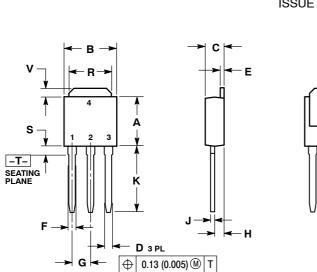
	INCHES		MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	0.617	0.635	15.67	16.12
В	0.392	0.419	9.96	10.63
С	0.177	0.193	4.50	4.90
D	0.024	0.039	0.60	1.00
F	0.116	0.129	2.95	3.28
G	0.100	BSC	2.54 BSC	
Η	0.118	0.135	3.00	3.43
-	0.018	0.025	0.45	0.63
K	0.503	0.541	12.78	13.73
L	0.048	0.058	1.23	1.47
Ν	0.200 BSC		5.08	BSC
Ø	0.122	0.138	3.10	3.50
R	0.099	0.117	2.51	2.96
s	0.092	0.113	2.34	2.87
C	0.239	0.271	6.06	6.88

STYLE 1: PIN 1. GATE

2. DRAIN 3. SOURCE

NOTES:

IDIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.


	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 5:

PIN 1. GATE 2. DRAIN

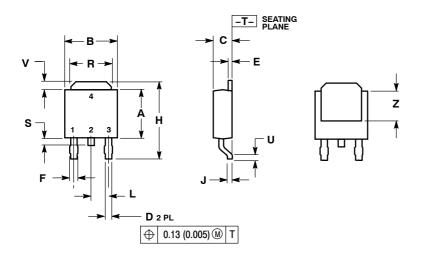
2. 3. SOURCE 4. DRAIN

PACKAGE DIMENSIONS

IPAK CASE 369D-01 ISSUE B

¥

z

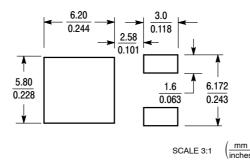

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
۷	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

PACKAGE DIMENSIONS

DPAK CASE 369AA-01 ISSUE A


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.235	0.245	5.97	6.22		
В	0.250	0.265	6.35	6.73		
С	0.086	0.094	2.19	2.38		
D	0.025	0.035	0.63	0.89		
Е	0.018	0.024	0.46	0.61		
F	0.030	0.045	0.77	1.14		
н	0.386	0.410	9.80	10.40		
J	0.018	0.023	0.46	0.58		
L	0.090	BSC	2.29	BSC		
R	0.180	0.215	4.57	5.45		
S	0.024	0.040	0.60	1.01		
U	0.020		0.51			
V	0.035	0.050	0.89	1.27		
Z	0.155		3.93			

STYLE 2: PIN 1. GATE 2. DRAIN

2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative