16-bit Proprietary Microcontroller

CMOS

F²MC-16L MB90670/675 Series

MB90671/672/673/T673/P673 (MB90670 Series) MB90676/677/678/T678/P678 (MB90675 Series)

DESCRIPTION

The MB90670/675 series is a member of 16-bit proprietary single-chip microcontroller F²MC^{*1}-16L family designed to be combined with an ASIC (Application Specific IC) core. The MB90670/675 series is a high-performance general-purpose 16-bit microcontroller for high-speed real-time processing in various industrial equipment, OA equipment, and process control.

The instruction set of F²MC-16L CPU core inherits AT architecture of F²MC-8 family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data (32-bit).

The MB90670/675 series has peripheral resources of UART0, UART1(SCI), an 8/10-bit A/D converter, an 8/16-bit PPG timer, a 16-bit reload timer, a 24-bit free run timer, an output compare (OCU), an input capture (ICU), DTP/external interrupt circuit, an I²C^{*2} interface (in MB90675 series only). Embedded peripheral resources performs data transmission with an intelligent I/O service function without the intervention of the CPU, enabling real-time control in various applications.

- *1: F²MC stands for FUJITSU Flexible Microcontroller.
- *2: Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

PACKAGES

■ FEATURES

- Clock Embedded PLL clock multiplication circuit Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz). Minimum instruction execution time of 62.5 ns (at oscillation of 4 MHz, four times the PLL clock, operation at Vcc of 5.0 V) CPU addressing space of 16 Mbytes Internal addressing of 24-bit External accessing can be performed by selecting 8/16-bit bus width (external bus mode) www.DataSheet4U • Instruction set optimized for controller applications Rich data types (bit, byte, word, long word) Rich addressing mode (23 types) High code efficiency Enhanced precision calculation realized by the 32-bit accumulator Instruction set designed for high level language (C) and multi-task operations Adoption of system stack pointer Enhanced pointer indirect instructions Barrel shift instructions Enhanced execution speed 4-byte instruction queue Enhanced interrupt function 8 levels, 32 factors Automatic data transmission function independent of CPU operation Extended intelligent I/O service function (EI²OS) · Low-power consumption (standby) mode Sleep mode (mode in which CPU operating clock is stopped) Timebase timer mode (mode in which other than oscillation and timebase timer are stopped) Stop mode (mode in which oscillation is stopped) CPU intermittent operation mode Hardware standby mode Process CMOS technology • I/O port MB90670 series: Maximum of 65 ports MB90675 series: Maximum of 84 ports • Timer Timebase timer/watchdog timer: 1 channel 8/16-bit PPG timer: 8-bit × 2 channels or 16-bit × 1 channel 16-bit reload timer: 2 channels 24-bit free run timer: 1 channel • Input capture (ICU) Generates an interrupt request by latching a 24-bit free run timer counter value upon detection of an edge input to the pin. Output compare (OCU) Generates an interrupt request and reverse the output level upon detection of a match between the 24-bit free run timer counter value and the compare setting value. • I²C interface (in MB90675 series only)
 - Serial I/O port for supporting Inter IC BUS

(Continued)

- UART0
 With full-duplex double buffer (8-bit length)
 Clock asynchronized or clock synchronized transmission (with start and stop bits) can be selectively used.
 UART1 (SCI)
- With full-duplex double buffer (8-bit length)

Clock asynchronized or clock synchronized serial transmission (I/O extended serial) can be selectively used.

• DTP/external interrupt circuit (4 channels)

A module for starting extended intelligent I/O service (EI²OS) and generating an external interrupt triggered by an external input.

www.DataSheet4U.toWake-up interrupt

Receives external interrupt requests and generates an interrupt request upon an "L" level input.

- Delayed interrupt generation module Generates an interrupt request for switching tasks.
 8/10-bit A/D converter (8 channels)
- 8-bit or 10-bit resolution can be selectively used. Starting by an external trigger input.

■ PRODUCT LINEUP

MB90670 series

Part number Item	MB90671	MB90672	MB90673	MB90T673	MB90P673				
Classification	Λ	lask ROM produc	External ROM product	One-time PROM product					
ROM size	16 Kbytes	32 Kbytes	48 Kbytes	External ROM	48 Kbytes				
RAM size	640 bytes	1.64 Kbytes		2 Kbytes					
4U.com	Number of instructions: 340 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock of 16 MHz) Interrupt processing time: 1.5 μs (at machine clock of 16 MHz, minimum value								
Ports	General-purpose I/O ports (CMOS output): 57 General-purpose I/O ports (N-ch open-drain output): 8 Total: 65								
UART0	Clock synchronized transmission (500 Kbps to 2 Mbps) Clock asynchronized transmission (4800 Kbps to 500 Kbps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.								
UART1 (SCI)	Clock synchronized transmission (500 Kbps to 2 Mbps) Clock asynchronized transmission (2400 Kbps to 62500 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.								
8/10-bit A/D converter	Continuo	Not conversion mo us conversion mo	de (converts sele		nuously)				
8/16-bit PPG timer	Number of channels: 2 8-bit or 16-bit PPG operation A Pulse wave of given intervals and given duty ratios can be output. Pulse cycle: 125 ns to 16.78 s (at oscillation of 4 MHz, machine clock of 16 MHz)								
16-bit reload timer	Number of channels: 2 16-bit reload timer operation Interval: 125 ns to 131 ms (at machine clock of 16 MHz) External event count can be performed.								
24-bit free run timer	Overflo		umber of channel ermediate bit inter	:1 rrupts may be gene	erated.				
Output compare unit (OCU)	Number of channels: 8 Pin input factor: A match signal of compare register								

(Continued)

Part number Item	MB90671	MB90672	MB90673	MB90T673	MB90P673				
Input capture unit (ICU)	Number of channels: 4 Rewriting a register value upon a pin input (rising, falling, or both edges)								
DTP/external interrupt circuit	Number of inputs: 4 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. External interrupt circuit or extended intelligent I/O service (EI ² OS) can be used.								
Wake-up interrupt	Number of inputs: 8 Started by an "L" level input.								
Delayed interrupt generation module	An interrupt generation module for switching tasks used in real-time operating systems.								
I ² C interface	None								
Timebase timer	18-bit counter Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms (at oscillation of 4 MHz)								
Watchdog timer	Reset ge		: 3.58 ms, 14.33 n of 4 MHz, mini	ms, 57.23 ms, 49 mum value)	58.75 ms				
Low-power consumption (standby) mode	Sleep/stop/CPU intermittent operation/timebase timer/hardware stand-by								
Process			CMOS						
Operating voltage*			2.7 V to 5.5 V						

*: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

• MB90675 series

Part number Item	MB90676	MB90677	MB90678	MB90T678	MB90P678	MB90V670				
Classification	Ma	ask ROM produ	cts	External ROM product	One-time PROM product	Evaluation product				
ROM size	32 Kbytes	48 Kbytes	64 Kbytes	None	64 Kbytes					
RAM size	1.64 Kbytes	2 Kbytes		3 Kbytes		4 Kbytes				
4U.com	Instru Ins Minimum	The number of instructions: 340 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock of 16 MHz) Interrupt processing time: 1.5 μs (at machine clock of 16 MHz, minimum value)								
Ports	Gene	General-purpose I/O ports (CMOS output): 74 General-purpose I/O ports (N-ch open-drain output): 10 Total: 84								
UART0	Transmission c connection.	Clock synchronized transmission (500 Kbps to 2 Mbps) Clock asynchronized transmission (4800 Kbps to 500 Kbps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.								
UART1 (SCI)		Clock asynchro	onized transmis	ission (500 Kbp sion (2400 Kbp: nal serial transn	s to 62500 bps)					
8/10-bit A/D con- verter	Cont	ne-shot convers inuous convers	Number o sion mode (conv sion mode (conv	or 8-bit can be se of inputs: 8 verts selected c verts selected ch d channel and s	hannel only on nannel continuo	ce) busly)				
8/16-bit PPG timer	Number of channels: 2 PPG operation of 8-bit or 16-bit Pulse of given intervals and given duty ratios can be output Pulse interval 125 ns to 16.78 s (at oscillation of 4 MHz, machine clock of 16 MHz)									
16-bit reload timer	Number of channels: 2 16-bit reload timer operation Interval: 125 ns to 131 ms (at machine clock of 16 MHz) External event count can be performed.									
24-bit free run timer	Ov	erflow interrupt		f channel :1 te bit interrupts i	may be genera	ted.				
Output compare (OCU)	Number of channels: 8 Pin input factor: a match signal of compare register									

Part number MB90676 MB90677 MB90678 **MB90T678** MB90P678 MB90V670 Item Number of channels: 4 Input capture (ICU) Rewriting a register value upon a pin input (rising, falling, or both edges) Number of inputs: 4 DTP/external inter-Started by a rising edge, a falling edge, an "H" level input, or an "L" level input. rupt circuit External interrupt circuit or extended intelligent I/O service (EI2OS) can be used. Number of inputs: 8 Wake-up interrupt Started by an "L" level input. Delayed interrupt An interrupt generation module for switching tasks used in realtime operating systems. generation module I²C interface Serial I/O port for supporting Inter IC BUS 18-bit counter Timebase timer Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms (at oscillation of 4 MHz) Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms Watchdog timer (at oscillation of 4 MHz, minimum value) Low-power consumption (stand-Sleep/stop/CPU intermittent operation/timebase timer/hardware stand-by by) mode Process CMOS Power supply volt-2.7 V to 5.5 V age for operation*

*: Varies with conditions such as the operating frequency. (See section "■ ELECTRICAL CHARACTERISTICS.") Assurance for the MB90V670 is given only for operation with a tool at a power voltage of 2.7 V to 5.5 V, an operating temperature of 0°C to 70°C, and an operating frequency of 1.5 MHz to 16 MHz.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90671 MB90672 MB90673 MB90T673	MB90P673	MB90676 MB90677 MB90678 MB90T678	MB90P678	MB90V670
FPT-80P-M05	0	0	×	×	×
FPT-80P-M06	0	0	×	×	×
FPT-100P-M05	×	×	0	0	×
FPT-100P-M06	×	×	0	0	×

 \bigcirc : Available \times : Not available

(Continued)

Note: For more information about each package, see section "■ PACKAGE DIMENSIONS."

DIFFERENCES AMONG PRODUCTS

1. Memory Size

In evaluation with an evaluation product, note the difference between the evaluation chip and the chip actually used. The following items must be taken into consideration.

- The MB90V670 does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V670, images from FF4400H to FFFFFH are mapped to bank 00, and FE0000H to FF3FFFH to mapped to bank FEH and FFH only. (This setting can be changed by configuring the development tool.)
- www.DataSheet4U.com the MB90678/MB90P678, images from FF4000н to FFFFFF are mapped to bank 00, and FF0000н to FF3FFF_H to bank FF only.

2. Mask Options

Functions selected by optional settings and methods for setting the options are dependent on the product types. Refer to "Mask Options" for detailed information.

Note that mask option is fixed in MB90V670 series.

■ PIN ASSIGNMENTS

www.DataSheet4U.com

■ PIN DESCRIPTION

	Pin no.						
LQFF -80*1		LQFP -100* ³	QFP -100*4	Pin name	Circuit type	Function	
62	64	80	82	X0	А	Crystal oscillator pins	
63	65	81	83	X1	(Oscillation)		
39 to 4	1 41 to 43	47 to 49	49 to 51	MD0 to MD2	F (CMOS)	Input pins for selecting operation modes Connect directly to Vcc or Vss.	
e(4U.(60)	62	75	77	RST	H (CMOS/H)	External reset request input	
42	44	50	52	HST	G (CMOS/H)	Hardware standby input pin	
				P00 to P07		General-purpose I/O port This function is valid in the single-chip mode.	
65 to 7	2 67 to 74	83 to 90	85 to 92	AD00 to AD07	B (CMOS)	I/O pins for the lower 8-bit of the external a dress data bus This function is valid in the mode where the ternal bus is valid.	
		, 91 to 96, 97, 98	93 to 98, 99, 100	P10 to P15, P16, P17		General-purpose I/O port This function is valid in the single-chip mode.	
73 to 7	8 75 to 80			AD08 to AD13, AD14, AD15	- B (CMOS)	I/O pins for the upper 8-bit of the external address data bus This function is valid in the mode where the external bus is valid.	
79, 80				WI0 to WI5, WI6, WI7		I/O pins for wake-up interrupts This function is valid in the single-chip mode. Because the input of the DTP/external inter- rupt circuit is used as required when the DTF external interrupt circuit is enabled, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.	
		00 100	1, 2, 3, 4	P20, P21, P22, P23	P	General-purpose I/O port This function becomes valid in the single-chip mode or the external address output control register is set to select a port.	
1, 2, 3,	4 3, 4, 5, 6	1, 2		B (CMOS) A16, A17, A18, 19		Output pins for the external address bus of A1 to A19 This function is valid in the mode where the external bus is valid and the upper address con trol register is set to select an address.	

(Continued)

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

	Pin no.								
	LQFP -80*1	QFP -80* ²	LQFP -100* ³	QFP -100*4	Pin name	Circuit type	Function		
					P24, P25		General-purpose I/O port This function is always valid.		
	5, 6	7, 8	3, 4	5, 6	TINO, TIN1	(CMOS/H)	Event input pins of 16-bit reload timer 0 and 1 Because this input is used as required when the 16-bit reload timer is performing input operations, and it is necessary to stop outputs by other func- tions unless such outputs are made intentionally.		
DataShee	7, 8	9 10	5, 6	7, 8	P26, P27	E	General-purpose I/O port This function is valid when outputs from 16-bit re- load timer 0 and 1 are disabled.		
	7,0	9, 10	5, 0	7,0	TOT0, TOT1	(CMOS/H)	Output pins for 16-bit reload timer 0 and 1 This function is valid when output from 16-bit re- load timer 0 and 1 are enabled.		
			7 9 P30 ALE	P30	В	General-purpose I/O port This function is valid in the single-chip mode.			
	10	12		9	ALE	(CMOS)	Address latch enable output pin This function is valid in the mode where the exter- nal bus is valid.		
					P31	В	General-purpose I/O port This function is valid in the single-chip mode.		
	11	13	8	10	RD	(CMOS)	Read strobe output pin for the data bus This function is valid in the mode where the exter- nal bus is valid.		
					P32		General-purpose I/O port <u>This function is valid in the single-chip mode or</u> WRL/WR pin output is disabled.		
	12	14	10	12	WRL	В	Write strobe output pin for t <u>he data b</u> us This function is valid when WRL/WR pin output is		
	12	14	10	12	WR	(CMOS)	enabled in the mode where external bus is valid. WRL is used for holding the lower 8-bit for write strobe in 16-bit access operations, while WR is used for holding 8-bit data for write strobe in 8-bit access operations.		
					P33	в	General-purpose I/O port This function is valid in the single-chip mode, in the external bus 8-bit mode, or WRH pin output is dis- abled.		
	13	15	11	13	WRH	(CMOS)	Write strobe output pin for the upper 8-bit of the data bus This function is valid when the external bus 16-bit mode is selected in the mode where the external bus is valid, and WRH output pin is enabled.		

(Continued)

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

Pin no.								
LQFP -80*1	QFP -80* ²	LQFP -100* ³	QFP -100*4	Pin name	Circuit type	Function		
				P34	- В	General-purpose I/O port This function is valid when both the single-chip mode and the hold function are disabled.		
14 4U.com	16	12	14	HRQ	(CMOS)	Hold request input pin This function is valid in the mode where the external bus is valid or when the hold function is en- abled.		
	P35	General-purpose I/O port This function is valid when both the single-chip mode and the hold function are disabled.						
15	17	13	13 15 B (CMOS)		Hold acknowledge output pin This function is valid in the mode where the external bus is valid or when the hold function is en- abled.			
				P36	B (CMOS)	General-purpose I/O port This function is valid when both the single-chip mode and the external ready function are disable		
16	18 1	14	16	RDY		Ready input pin This function is valid when the external ready fun tion is enabled in the mode where the external bu is valid.		
17	19	15	17	P37	В	General-purpose I/O port This function is valid in the single-chip mode or when the CLK output is disabled.		
17	19	15	17	CLK	(CMOS)	CLK output pin This function is valid when CLK output is disable in the mode where the external bus is valid.		
				P40		General-purpose I/O port This function is always valid.		
18	20	16	18	SIN0	E (CMOS/H)	Serial data input pin of UART0 Because this input is used as required when UART0 is performing input operations, and it is necessary to stop outputs by other functions un- less such outputs are made intentionally.		
19	21	17	19	P41	E	General-purpose I/O port This function is valid when serial data output from UART0 is disabled.		
19	21	17	19	SOT0	(CMOS/H)	Serial data output pin of UART0 This function is valid when serial data output from UART0 is enabled.		

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

*4: FPT-100P-M06

	Pin no.								
	LQFP -80*1	QFP -80* ²	LQFP -100* ³	QFP -100*4	Pin name	Circuit type	Function		
					P42		General-purpose I/O port This function is valid when clock output from UART0 is disabled.		
aShee	20 t4U.com	22	18	20	SCK0	E (CMOS/H) SCK0	Clock I/O pin of UART0 This function is valid when clock output from UART0 is enabled. Because this input is used as required when UART0 is performing input operations, and it is necessary to stop outputs by other functions un- less such outputs are made intentionally.		
					P43		General-purpose I/O port This function is always valid.		
	21	23	19	21	SIN1	E (CMOS/H)	Serial data input pin of UART1 (SCI) Because this input is used as required when UART1 (SCI) is performing input operations, and it is necessary to stop outputs by other functions un- less such outputs are made intentionally.		
	22	24	20	22	P44	E	General-purpose I/O port This function is valid when serial data output from UART1 (SCI) is disabled.		
	22	24	20	~~~	SOT1	(CMOS/H)	Serial data output pin of UART1 (SCI) This function is valid when serial data output from UART1 (SCI) is enabled.		
					P45		General-purpose I/O port This function is valid when clock output from UART1 (SCI) is disabled.		
	23	25	22	24	SCK1		Clock I/O pin of UART1 (SCI) This function is valid when clock output from UART1 (SCI) is enabled. Because this input is used as required when UART1 (SCI) is performing input operations, and it is necessary to stop outputs by other functions un- less such outputs are made intentionally.		
	24	26	23	25	P46	Е	General-purpose I/O port This function is valid when waveform output from 8/16-bit PPG timer 0 is disabled.		
	24	20	20	20	PPG0	(CMOS/H)	Output pin of 8/16-bit PPG timer 0 This function is valid when waveform output from 8/16-bit PPG timer 0 is enabled. (Continued)		

(Continued)

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

	Pin no.							
LQFP -80*1	QFP -80* ²			Pin name Circuit type		Function		
				P47		General-purpose I/O port This function is always valid.		
25 est4U.com	27	24	26	ATG	E (CMOS/H)	Trigger input pin of the 8/10-bit A/D converter Because this input is used as required when the 8/10-bit A/D converter is performing input opera- tions, and it is necessary to stop outputs by other functions unless such outputs are made intention- ally.		
30, 31, 33, 34,	32, 33, 35, 36,	36, 37, 38, 39,	38, 39,	P50, P51, P52, P53, P54 to P57	С	I/O port of an open-drain type The input function is valid when the analog input enable register is set to select a port.		
	35, 36, 37 to 40		40, 41, 43 to 46	AN0, AN1, AN2, AN3, AN4 to AN7	(CMOS/H)	Analog input pins of the 8/10-bit A/D converter This function is valid when the analog input en- able register is set to select AD.		
		3 51 to 54	53 to 56	P60 to P63	E (CMOS/H)	General-purpose I/O port This function is always valid.		
43 to 46	45 to 48			INT0 to INT3		Request input pins of the DTP/external interrupt circuit Because this input is used as required when the DTP/external interrupt circuit is performing input operations, and it is necessary to stop outputs from other functions unless such outputs are made intentionally.		
				P64 to P67		General-purpose I/O port This function is always valid.		
47 to 50	49 to 52	55 to 58		ASR0 to ASR3	E (CMOS/H)	Sample data input pins for ICU0 to ICU3 Because this input is used as required when the input capture (ICU) is performing input opera- tions, and it is necessary to stop outputs from oth- er functions unless such outputs are made intentionally.		
	53 to 60	o 60 59 to 66	61 to 68	P70 to P77	E	General-purpose I/O port This function is valid when waveform output from the output compare (OCU) is disabled.		
51 to 58				DOT0 to DOT7	(CMOS/H)	Waveform output pins of OCU0 and OCU1 This function is valid when waveform output from the output compare (OCU) is enabled and output from the port is selected.		

(Continued)

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

(Continued)

	Pin	n no.					
LQFP -80*1	QFP LQFP -80*2 -100*3		QFP -100*4	Pin name	Circuit type	Function	
59	61	25	27	P80	E	General-purpose I/O port This function is valid when waveform output from 8/16-bit PPG timer 1 is disabled.	
59	01	25	21	PPG1	(CMOS/H)	Output pin of 8/16-bit PPG timer 1 This function is valid when waveform output from 8/16-bit PPG timer 1 is enabled.	
4U.com		26 to 31	28 to 33	P81 to P86	E (CMOS/H)	General-purpose I/O port This function is always valid.	
				P90		I/O port of an open-drain type This function is always valid.	
_		45	47	SDA	D (NMOS/H)	I/O pin of the I ² C interface This function is valid when operation of the I ² C interface is enabled. Hold the port output in the high-impedance sta- tus (PDR = 1) when the I ² C interface is in opera- tion.	
				P91		I/O port of an open-drain type This function is always valid.	
—	_	46	48	SCL	D (NMOS/H)	Clock I/O pin of the I ² C interface This function is valid when operation of the I ² C interface is enabled. Hold the port output in the high-impedance status (PDR = 1) when the I ² C interface is in operation.	
		67 to 74	69 to 76	PA0 to PA7	E (CMOS/H)	General-purpose I/O port This function is always valid.	
	_	76 to 78	78 to 80	PB0 to PB2	E (CMOS/H)	General-purpose I/O port This function is always valid.	
64	66	21, 82	23, 84	Vcc	Power supply	Power supply to the digital circuit	
9, 32, 61	11, 34, 63	9, 40, 79	11, 42, 81	Vss	Power supply	Ground level of the digital circuit	
26	28	32	34	AVcc	Power supply	Power supply to the analog circuit Make sure to turn on/turn off this power supply with a voltage exceeding AV $_{\rm CC}$ applied to V $_{\rm CC}$.	
27	29	33	35	AVRH	Power supply	Reference voltage input to the analog circuit Make sure to turn on/turn off this power supply with a voltage exceeding AVRH applied to AVcc	
28	30	34	36	AVRL	Power supply	Reference voltage input to the analog circuit	
29	31	35	37	AVss	Power supply	Ground level of the analog circuit	

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

■ I/O CIRCUIT TYPE

www.DataSheet4U.gom

■ HANDLING DEVICES

1. Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH) and analog input voltages not exceed the digital voltage (Vcc).

2. Connection of Unused Pins

Leaving unused pins open may result in abnormal operations. Clamp the pin level by connecting it to a pull-up or a pull-down resistor.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

4. Power Supply Pins

In products with multiple V_{cc} or V_{SS} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level and abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect V_{CC} and V_{SS} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 µF between Vcc and Vss pin near the device.

5. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

6. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

7. Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = Vss.

8. "MOV @AL, AH", "MOVW @AL, AH" Instructions

When the above instruction is performed to I/O space, an unnecessary writing operation (#FF, #FFFF) may be performed in the internal bus.

Use the compiler function for inserting an NOP instruction before the above instructions to avoid the writing operation.

Accessing RAM space with the above instruction does not cause any problem.

9. Initialization

In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers, turning on the power again.

10. Caution on operations during PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

■ PROGRAMMING TO THE ONE-TIME PROM ON THE MB90P673/P678

The MB90P673 and MB90P678 has a PROM mode for emulation operation of the MBM27C1000/1000A, to which writing codes by a general-purpose ROM writer can be done via a dedicated adapter. Please note that the device is not compatible with the electronic signature (device ID code) mode.

1. Writing Sequence

The memory map for the PROM mode is shown as follows. Write option data to the option setting area according by referring to "7. PROM Option Bit Map".

	FFFFF	Normal operation mod	е ·► 1FFFFFн г	PROM mode	1	
t4U.com		Programarea (PROM)		Programarea (PROM)		
	Address*2		► Address*1			
	010000н					
		ROM image				
	004000н					
			0002Cн -	Option		
	000000н		00000н	setting area		
	Туре	Address*1	Address*2	Numb	er of bytes	
	MB90P673	14000н	FF4000н	48	48 Kbytes	
	MB90P678	10000н	FF0000 н	64	64 Kbytes	

Write data to the one-time PROM microcontrollers according to the following sequence.

- (1) Set the PROM programer to select the MBM27C1000/1000A.
- (2) Load the program data to the ROM programer address ⁺¹ to 1FFFF_H. To select a PROM option, load the option data from 00000_H to 0002C_H referring to "7. PROM Option Bit Map".
- (3) Set the chip to the adapter socket and load the socket to the ROM programer. Make sure that the device and adapter socket are properly oriented.
- (4) Program from 00000H to 1FFFFH.

Notes:

- In mask-ROM products, there is no PROM mode and it is impossible to read data by a ROM programer.
- Contact sales personnel when purchasing a ROM programer.

2. Program Mode

In the MB90P673/P678, all the bits are set to "1" upon shipping from FUJITSU or erasing operation. To write data, set desired bit selectively to "0". However it is impossible to write electronically to the bits.

3. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked One-time PROM microcomputer program.

4. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked One-time PROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

5. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

	Part no.		MB90P673PF	MB90P673PFV	MB90P678PF	MB90P678PFV
	Package		QFP-80	LQFP-80	QFP-100	LQFP-100
	Compatible socket ada		ROM-80QF-	ROM-80SQF-	ROM-100QF-	ROM-100SQF-
	Sun Hayato Co., Ltd		32DP-16L	32DP-16L	32DP-16L	32DP-16L
cturer		1890A	_	_	_	Recommended
manufa	Minato Electronics Inc. Data I/O Co., Ltd.	1891	_	_	_	Recommended
programmer manufacturer :r name		1930	_		_	Recommended
1 (1)		UNISITE		_	_	Recommended
Recommended p and programmer		3900	_	_	_	Recommended
Recom and pro		2900		_	_	Recommended

Inquiry: San Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106

Minato Electronics Inc.: TEL: USA (1)-916-348-6066 JAPAN (81)-45-591-5611

Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444

EUROPE (49)-8-985-8580

6. Pin Assignment for EPROM Mode

• MBM27C1000/1000A pin compatible

		01000,1000,1		-	
	MBM27C ²	1000/1000A	MB90P673	3/MB90P678	MBM27C
	Pin no.	Pin name	Pin no.	Pin name	Pin no.
	1	Vpp		MD2	32
	2	OE		P32	31
	3	A15		P17	30
	4	A12		P14	29
ataShee	4U.com 5	A07		P27	28
	6	A06		P26	27
	7	A05	ints.	P25	26
	8	A04	ume	P24	25
	9	A03	Refer to pin assignments.	P23	24
	10	A02	in a;	P22	23
	11	A01	to p	P21	22
	12	A00	efer	P20	21
	13	D00	Re	P00	20
	14	D01		P01	19
	15	D02		P02	18
	16	GND		Vss	17

MBM27C ²	1000/1000A	MB90P673	B/MB90P678
Pin no.	Pin name	Pin no.	Pin name
32	Vcc		Vcc
31	PGM		P33
30	N.C.		—
29	A14		P16
28	A13		P15
27	A08		P10
26	A09	nts.	P11
25	A11	nme	P13
24	A16	ssig	P30
23	A10	in a:	P12
22	CE	to p	P31
21	D07	Refer to pin assignments.	P07
20	D06	Re	P06
19	D05		P05
18	D04		P04
17	D03		P03

• Pin assignments for products not compatible with MBM27C1000/1000A

OPEN

Pin name

MD0

MD1

X0

X1

AVcc

P37

P90 P91

AVRH

P40 to P47

P50 to P57

P60 to P67

P70 to P77

P80 to P86

PA0 to PA7 PB0 to PB2

Pin no.

Refer to pin assignments.

processing Pin no. Pin name Туре HST Refer to pin Power supply Connect a pull-up resisassignments. Vcc tor of 4.7 k Ω . P34 P35 <u>P36</u> RST Refer to pin GND assignments. AVRL AVss Vss Connect a pull-up resistor having a resistance of

• Power supply, GND connected pin

approximately

1 M Ω to each pin.

7. PROM Option Bit Map

Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
00000н	Vacancy	RST Pull-up 1: No 0: Yes	Vacancy	MD1 Pull-up 1: No 0: Yes	MD1 Pull-down 1: No 0: Yes	MD0 Pull-up 1: No 0: Yes	MD0 Pull-down 1: No 0: Yes	Vacancy
00004н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
4U.com 00008н	P17 Pull-up 1: No 0: Yes	P16 Pull-up 1: No 0: Yes	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes
0000Сн	P27	P26	P25	P24	P23	P22	P21	P20
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00010н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00014н	P47	P46	P45	P44	P43	P42	P41	P40
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
0001Сн	P67	P66	P65	P64	P63	P62	P61	P60
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00020н	P77	P76	P75	P74	P73	P72	P71	P70
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00024н	Vacancy	P86 Pull-up 1: No 0: Yes	P85 Pull-up 1: No 0: Yes	P84 Pull-up 1: No 0: Yes	P83 Pull-up 1: No 0: Yes	P82 Pull-up 1: No 0: Yes	P81 Pull-up 1: No 0: Yes	P80 Pull-up 1: No 0: Yes
00028н	PA5 Pull-up 1: No 0: Yes	PA4 Pull-up 1: No 0: Yes	PA3 Pull-up 1: No 0: Yes	PA2 Pull-up 1: No 0: Yes	PA1 Pull-up 1: No 0: Yes	PA0 Pull-up 1: No 0: Yes	Vacancy	Vacancy
0002Сн	Vacancy	Vacancy	Vacancy	PB2 Pull-up 1: No 0: Yes	PB1 Pull-up 1: No 0: Yes	PB0 Pull-up 1: No 0: Yes	PA7 Pull-up 1: No 0: Yes	PA6 Pull-up 1: No 0: Yes

Notes:

• Data "1" must be programed to the reserved bits and address other than listed above.

• Only MB90P678 has pull-up options for P81 to P86, PA0 to PA7, and PB0 to PB2 pins.

• Data "1" must be programed for the MB90P673.

MEMORY MAP

Notes:

• The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 is assigned to the same address, enabling reference of the table on the ROM without stating "far".

However, the ROM area of the MB90678/P678 exceeds 48 Kbytes, and for this reason, the image from FF4000_H to FFFFF_H is reflected on bank 00 and image from FF0000_H to FF3FFF_H bank FF only.

• In the MB90670/675 series, the upper 4-bit of the address are not output to the external bus. For this reason, the maximum area accessible is 1 Mbyte. The same address is accessed through different banks in different images.

For example, accessing "A00000H" and "B00000H" accesses the same address on the external bus.

• To prevent the memory or I/O from being accessed through images, and the data from being destroyed, it is recommended to limit number of banks to a maximum of 16 so that the banks are mapped without interfering each other. Caution must be also taken when masking the upper address with the external address output control register (HACR).

■ F²MC-16L CPU PROGRAMMING MODEL

(1) Dedicated Registers

	AH	AL	: Accumulator (A) Dual 16-bit register used for storing results of calculation etc. The two 16-bit reg- isters can be combined to be used as a 32-bit register.
		USP	: User stack pointer (USP) The 16-bit pointer indicating a user stack address.
hee14	U.com	SSP	: System stack pointer (SSP) The 16-bit pointer indicating the status of the system stack address.
		PS	: Processor status (PS) The 16-bit register indicating the system status.
		PC	: Program counter (PC) The 16-bit register indicating storing location of the current instruction code.
		DPR	: Direct page register (DPR) The 8-bit register for specifying bit 8 through 15 of the operand address in the short direct addressing mode.
		PCB	: Program bank register (PCB) The 8-bit register indicating the program space.
		DTB	: Data bank register (DTB) The 8-bit register indicating the data space.
		USB	: User stack bank register (USB) The 8-bit register indicating the user stack space.
		SSB	: System stack bank register (SSB) The 8-bit register indicating the system stack space.
		ADB	: Additional data bank register (ADB) The 8-bit register indicating the additional space.
		8-bit	
	 	32-bit	

(2) General-purpose Registers

(3) Processor Status (PS)

■ I/O MAP

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
00000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXXB
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
00002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	1111111
00006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXXB
000007н	PDR7	Port 7 data register	R	Port 7	XXXXXXXXB
00008н	PDR8	Port 8 data register	R/W	Port 8 ^{*5}	-XXXXXXXB
00009н	PDR9	Port 9 data register	R/W	Port 9*5	——————————————————— 1 в
00000Ан	PDRA	Port A data register	R/W	Port A*5	XXXXXXXX
00000Вн	PDRB	Port B data register	R/W	Port B*5	XXXB
00000Сн to 00000Ен		(Vacano	cy)* ³		
00000 F н	EIFR	Wake-up interrupt flag register	R/W	Wake-up interrupt	——————— О _В
000010н	DDR0	Port 0 data direction register	R/W	Port 0	0000000в
000011н	DDR1	Port 1 data direction register	R/W	Port 1	0000000в
000012н	DDR2	Port 2 data direction register	R/W	Port 2	0000000в
000013н	DDR3	Port 3 data direction register	R/W	Port 3	0000000в
000014н	DDR4	Port 4 data direction register	R/W	Port 4	0000000в
000015н	ADER	Analog input enable register	R/W	Port 5, analog input	11111111в
000016н	DDR6	Port 6 data direction register	R/W	Port 6	0000000в
000017н	DDR7	Port 7 data direction register	R/W	Port 7	0000000в
000018н	DDR8	Port 8 data direction register	R/W	Port 8 ^{*5}	-000000в
000019н		(Vacano	¢y)*₃		
00001Ан	DDRA	Port A data direction register	R/W	Port A*5	0000000в
00001Вн	DDRB	Port B data direction register	R/W	Port B* ⁵	000в
00001Cн to 00001Eн		(Vacano	cy)* ³	1	
00001 F н	EICR	Wake-up interrupt enable register	W	Wake-up interrupt	0000000в

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000020н	UMC0	Mode control register 0	R/W!		00000100в
000021н	USR0	Status register 0	R/W!		00010000в
000022н	UIDR0/ UODR0	Input data register 0/ output data register 0	R/W	UART0	XXXXXXXXB
000023н	URD0	Rate and data register 0	R/W		0000000в
000024н	SMR1	Mode register 1	R/W		0000000в
000025н	SCR1	Control register 1	R/W!		00000100в
000026н	SIDR1/ SODR1	Input data register 1/ output data register 1	R/W	UART1 (SCI)	XXXXXXXXB
000027н	SSR1	Status register 1	R/W!		00001-00в
000028н	ENIR	DTP/interrupt enable register	R/W		<i></i> 0000в
000029н	EIRR	DTP/interrupt factor register	R/W	DTP/external in- terrupt circuit	0000в
00002Ан	ELVR	Request level setting register	R/W		0000000в
00002Вн		(Vacan	cy)*³	1	
00002Сн	1000	A/D convertor control status reg-			0000000в
00002Dн	ADCS	ister	R/W!	8/10-bit A/D converter	0000000в
00002Ен	1000				XXXXXXXX
00002Fн	ADCR	A/D convertor data register	R/W!*4	-	000000ХХв
000030н	PPGC0	PPG0 operating mode control register	R/W!	8/16-bit PPG timer 0	0-000001в
000031н	PPGC1	PPG1 operating mode control register	R/W!	8/16-bit PPG timer 1	0000000в
000032н		()/2222	ov*3	I	
000033н		(Vacan	Cy) °		
000034н	PRLL0	PPC0 relead register	R/W	8/16-bit PPG	XXXXXXXX
000035н	PRLH0	PPG0 reload register	R/W	timer 0	XXXXXXXX
000036н	PRLL1		R/W	8/16-bit PPG	XXXXXXXX
000037н	PRLH1	PPG1 reload register	R/W	timer 1	XXXXXXXX
000038н	TMOODO	Time an example status as sister 0			0000000в
000039н	TMCSR0	Timer control status register 0	R/W!	16-bit reload	<i>— — — — 0000</i> в
00003Ан	TMR0/	16-bit timer register 0/	D 44/	timer 0	XXXXXXXXB
00003Вн	TMRLR0	16-bit reload register 0	R/W		XXXXXXXXB
00003Сн	TM0001				0000000в
00003Dн	TMCSR1	Timer control status register 1	R/W!	16-bit reload	<i></i> 0000в
00003Ен	TMR1/	16-bit timer register 1/		timer 1	XXXXXXXXB
			R/W	1	

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000040н	IBSR	I ² C bus status register	R		0000000в
000041н	IBCR	I ² C bus control register	R/W		0000000в
000042н	ICCR	I ² C bus clock control register	R/W	I ² C interface*6	0XXXXXB
000043н	IADR	I ² C bus address register	R/W		-XXXXXXXB
000044н	IDAR	I ² C bus data register	R/W		XXXXXXXXB
000045н to 00004Fн		(Vacano	cy)* ³		
000050н	TOOD			24-bit free-run	11000000в
000051н	TCCR	Free-run timer control register	R/W!	timer	— — 111111 в
000052н	100			Input capture	0000000в
000053н	ICC	ICU control register	R/W	(ICU)	0000000в
000054н	TODI	Free run timer lower data register	Р		0000000в
000055н	TCRL	Free-run timer lower data register	R	24-bit free-run	0000000в
000056н	TODU		6	timer	0000000в
000057н	TCRH	Free-run timer upper data register	R		0000000в
000058н	00000			Output compare (OCU)	11110000в
000059н	CCR00	OCU control register 00	R/W		0000B
00005Ан	00004			(UCU) (unit 0)	0000B
00005Вн	CCR01	OCU control register 01	R/W		0000000в
00005 С н	00040				11110000в
00005Dн	CCR10	OCU control register 10	R/W	Output compare	<i>— — — — 0000</i> в
00005Ен	00044			(OCU) (unit 1)	0000B
00005Fн	CCR11	OCU control register 11	R/W		0000000в
000060н			L L		XXXXXXXX
000061н	ICDR0L	ICU lower data register 0	R		XXXXXXXX
000062н		ICI I upper dete register 0	Р		XXXXXXXX
000063н	ICDR0H	ICU upper data register 0	R		0000000в
000064н		ICI I lower dete register 4	Р	Input capture	XXXXXXXX
000065н	ICDR1L	ICU lower data register 1	R	(ICU)	XXXXXXXX
000066н			ſ	1	XXXXXXXX
000067н	ICDR1H	ICU upper data register 1	R		0000000в
000068н			ſ	1	XXXXXXXX
000069н	ICDR2L	ICU lower data register 2	R		XXXXXXXXAB

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
00006Ан	ICDR2H	ICU upper data register 2	R		XXXXXXXXB
00006Вн	ICDR2H		К	-	0000000в
00006Сн	ICDR3L	ICU lower data register 3	R	Input capture	XXXXXXXXB
00006Dн	ICDR3L		R.	Input capture (ICU)	XXXXXXXXB
00006Ен	ICDR3H	ICU upper data register 3	R		XXXXXXXXB
00006Fн	ICDRSH	ico upper data register 3	R.		0000000в
000070н	CPR00L	OCU compare lower data	R/W		0000000в
000071н	CFROOL	register 0	L/ M		0000000в
000072н	CPR00H	OCU compare upper data	R/W	Output compare (OCU) (unit 0)	0000000в
000073н	CEROON	register 0	L/ / /		0000000в
000074н	CPR01L	OCU compare lower data	R/W		0000000в
000075н	OFROIL	register 1	1\/ VV		0000000в
000076н	CPR01H	OCU compare upper data	R/W		0000000в
000077н	CFRUIT	register 1	L/ / /		0000000в
000078н	CPR02L	OCU compare lower data	R/W		0000000в
000079н	OF ROZE	register 2	1\/ VV		0000000в
00007Ан	CPR02H	OCU compare upper data	R/W		0000000в
00007Вн		register 2			0000000в
00007Сн	CPR03L	OCU compare lower data	R/W		0000000в
00007Dн	OFICOL	register 3	1.7, 4, 4		0000000в
00007Eн	CPR03H	OCU compare upper data register	R/W		0000000в
00007Fн	0110011	3	1.7, 4, 4		0000000в
000080н	CPR04L	OCU compare lower data	R/W		0000000в
000081н		register 4	1.7, 4, 4		0000000в
000082н	CPR04H	OCU compare upper data	R/W		0000000в
000083н	CFIX04I1	register 4	1\/ VV		0000000в
000084н	CPR05L	OCU compare lower data	R/W		0000000в
000085н	OFICOL	register 5	1.7, 4, 4	Output compare (OCU)	0000000в
000086н		OCU compare upper data	R/W	(UCU) (unit 1)	0000000в
000087н	CPR05H	register 5	17/ 88		0000000в
000088н	CPR06L	OCU compare lower data			0000000в
000089н	CFRUEL	register 6	R/W	-	0000000в
00008Ан		OCU compare upper data	R/W		0000000в
00008Bн	CPR06H	register 6	rt/VV		0000000в

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value		
00008Сн	CPR07L	OCU compare lower data	R/W		0000000в		
00008DH	CFR0/L	register 7	F\/ V V	Output compare (OCU)	0000000в		
00008EH	CPR07H	OCU compare upper data	R/W	(unit 1)	0000000в		
00008Fн	CFIXUITI	register 7	1\/ VV		0000000в		
000090н to 00009Ен		(System reservation area)*1					
00009Fн	DIRR	Delayed interrupt factor genera- tion/ cancellation register	R/W	Delayed interrupt generation module	0		
0000А0н	LPMCR	Low-power consumption mode control register	R/W!	Low-power consumption (stand-by) mode	00011000в		
0000A1 н	CKSCR	Clock selection register	R/W!	Low-power consumption (stand-by) mode	11111100в		
0000А2н to 0000А4н		(Vacancy)* ³					
0000А5н	ARSR	Automatic ready function select register	W	External bus pin	0011 — – 00в		
0000А6н	HACR	Upper address control register	W	External bus pin	0000e		
0000А7н	EPCR	Bus control signal select register	W	External bus pin	0000*00-в		
0000А8н	WDTC	Watchdog timer control register	R/W!	Watchdog timer	XXXXX111 _B		
0000А9н	ТВТС	Timebase timer control register	R/W!	Timebase timer	1 — — 00100в		
0000ААн to 0000АFн		(Vacano	су)* ³				
0000В0н	ICR00	Interrupt control register 00	R/W!		00000111в		
0000B1н	ICR01	Interrupt control register 01	R/W!		00000111в		
0000B2н	ICR02	Interrupt control register 02	R/W!		00000111в		
0000ВЗн	ICR03	Interrupt control register 03	R/W!		00000111в		
0000В4н	ICR04	Interrupt control register 04	R/W!	Interrupt	00000111в		
0000B5н	ICR05	Interrupt control register 05	R/W!	controller	00000111в		
0000В6н	ICR06	Interrupt control register 06	R/W!		00000111в		
0000B7н	ICR07	Interrupt control register 07	R/W!		00000111в		
0000B8H	ICR08	Interrupt control register 08	R/W!		00000111в		
0000В9н	ICR09	Interrupt control register 09	R/W!		00000111в		

(Continued)

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value		
0000ВАн	ICR10	Interrupt control register 10	R/W!		00000111в		
0000ВВн	ICR11	Interrupt control register 11	R/W!		00000111в		
0000BCн	ICR12	Interrupt control register 12	R/W!	Interrupt	00000111в		
0000BDн	BDH ICR13	Interrupt control register 13	R/W!	controller	00000111в		
0000BEн	ICR14	Interrupt control register 14	R/W!		00000111в		
4 0000BF н	ICR15	Interrupt control register 15	R/W!		00000111в		
0000C0н to 0000FFн	(External area)*2						

Descriptions for read/write

R/W: Readable and writable

- R: Read only
- W: Write only

R/W!: Bits for reading operation only or writing operation only are included. Refer to the register lists for specific resource for detailed information.

Descriptions for initial value

- 0 : The initial value of this bit is "0".
- 1 : The initial value of this bit is "1".
- * : The initial value of this bit is "1" or "0" (decided by levels on pins of MD0 through MD2).
- X : The initial value of this bit is indeterminate.
- : This bit is not used. The initial value is indeterminate.
- *1: Access prohibited.
- *2: This area is the only external access area having an address of 0000FF_H or lower. An access operation to this area is handled as that to external I/O area.
- *3: The area corresponding to the "(Vacancy)" on the I/O map is reserved, and accessing operation to this area is handled as that to internal area. No access signal to external devices are generated.
- *4: Only bit 15 is writable. Reading bit 10 through bit 15 returns "0" as a reading result.
- *5: In the MB90670 series, P81 through P86, P90, P91, PA0 through PA7, PB0 through PB2 are not present. For this reason, bits corresponding to these pins are not used.
- *6: The MB90670 series does not have the I²C interface. For this reason, this area is "(Vacancy)" in the MB90670 series.
- Note: For bits that is only allowed to program, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results.

For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending on the types of the reset. However initial value for resets that initializes the value are listed.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

	El ² OS	In	terrup	t vector	Interrupt c	ontrol register	Priority*4
Interrupt source	support	Nun	nber	Address	ICR	Address	Priority
Reset	×	# 08	08н	FFFFDCH			High
INT9 instruction	×	# 09	09н	FFFFD8H	_		▲
Exception	×	# 10	0Ан	FFFFD4H			
DTP/external interrupt circuit Channel 0		# 11	0Вн	FFFFD0H	ICR00	0000B0н*2	
DTP/external interrupt circuit Channel 1		# 12	0Сн	FFFFCCH		0000608 -	
DTP/external interrupt circuit Channel 2		# 13	0Dн	FFFFC8H	ICR01	0000 B1 н*2	
DTP/external interrupt circuit Channel 3		# 14	0Ен	FFFFC4 _H		00008111 -	
Output compare Channel 0	\bigtriangleup	# 15	0Fн	FFFFC0H		000000 *2	
Output compare Channel 1		# 16	10н	FFFFBC _H	ICR02	0000B2н*2	
Output compare Channel 2	\bigtriangleup	# 17	11н	FFFFB8H	10000	000000 *2	
Output compare Channel 3	\bigtriangleup	# 18	12н	FFFFB4H	ICR03	0000 В 3н*2	
Output compare Channel 4	\bigtriangleup	# 19	13н	FFFFB0H	10004	000004 *2	
Output compare Channel 5	\bigtriangleup	# 20	14н	FFFFAC H	ICR04	0000B4н*2	
Output compare Channel 6	\bigtriangleup	# 21	15н	FFFFA8H		000005 *2	
Output compare Channel 7	\bigtriangleup	# 22	16 н	FFFFA4H	ICR05	0000B5н*2	
24-bit free-run timer Overflow	\bigtriangleup	# 23	17 н	FFFFA0H			
24-bit free-run timer Intermediate bit		# 24	18 н	FFFF9CH	ICR06	0000 В 6н*2	
Input capture Channel 0	\bigtriangleup	# 25	19 н	FFFF98H		000007*2	-
Input capture Channel 1	\bigtriangleup	# 26	1Ан	FFFF94н	ICR07	0000 B7 н*2	
Input capture Channel 2	\bigtriangleup	# 27	1В н	FFFF90H	10000	000000 *2	-
Input capture Channel 3		# 28	1Сн	FFFF8CH	ICR08	0000B8н*2	
16-bit reload timer/ 8/16-bit PPG timer 0		# 29	1Dн	FFFF88H	10000	000000 *2 *3	
16-bit reload timer/ 8/16-bit PPG timer 1		# 30	1Eн	FFFF84 _H	ICR09	0000B9 _H *2, *3	
8/10-bit A/D converter measure- ment complete	0	# 31	1Fн	FFFF80H	ICR10	0000ВАн	
Wake-up interrupt	×	# 33	21н	FFFF78⊦	ICR11	0000BBн*2	
Timebase timer interval interrupt	×	# 34	22н	FFFF74 _H	-		Low

(Continued)

(Continued)

Interrupt source	El ² OS	Ir	terrup	t vector	•	ontrol regis- er	Priority*4	
	support	Nun	nber	Address	ICR	Address		
UART1 (SCI) transmission com- plete	\bigtriangleup	# 35	23н	FFFF70H	ICR12	0000BC _{H*2}	High	
UART0 transmission complete	\bigtriangleup	# 36	24н	FFFF6CH			A	
UART1 (SCI) reception complete	0	# 37	25н	FFFF68⊦	ICR13	0000BDH*2		
I ² C interface*1	×	# 38	26н	FFFF64⊦	ICK 13	0000BDH -		
UART0 reception complete	0	# 39	27н	FFFF60H	ICR14	0000ВЕн	V	
Delayed interrupt generation module	×	# 42	2Ан	FFFF54 _H	ICR15	0000BFн	Low	

 \bigcirc : Can be used

 \times : Can not be used

 $\odot\,$: Can be used. With EI²OS stop function.

 \bigtriangleup : Can be used if interrupt request using ICR are not commonly used.

*1: In MB90670 series, this interrupt vector is not used because the series does not have the I²C interface.

*2: • Interrupt levels for peripherals that commonly use the ICR register are in the same level.

- When the extended intelligent I/O service (EI²OS) is specified in a peripheral device commonly using the ICR register, only one of the functions can be used.
- When the extended intelligent I/O service (EI²OS) is specified for one of the peripheral functions, interrupts can not be used on the other function.
- *3: Only 16-bit reload timer conforms to the extended intelligent I/O service (EI²OS). Because the 8/16-bit PPG timer does not conform to the extended intelligent I/O service (EI²OS), disable interrupts of the 8/16-bit PPG timer when using the extended intelligent I/O service (EI²OS) in the 16-bit reload timer.

*4: The level shows priority of same level of interrupt invoked simultaneously.

PERIPHERALS

1. I/O Port

(1) Input/output Port

Port 0 to 4, 6, 8, A, and B are general-purpose I/O ports having a combined function as an external bus pin and a resource input. The input output ports function as general-purpose I/O port only in the single-chip mode. In the external bus mode, the ports are configured as external bus pins, and part of pins for port 3 can be configured as general-purpose I/O port by setting the bus control signal select register (ECSR). Each pin corresponding to upper 4-bit of the port 2 can be switched between a resource and a port bitwise.

Only MB90675 series has port A and port B.

Operation as output port

The pin is configured as an output port by setting the corresponding bit of the DDR register to "1". Writing data to PDR register when the port is configured as output, the data is retained in the output latch in the PDR and directly output to the pin.

The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR register.

Note: When a read-modify-write instruction (e.g. bit set instruction) is performed to the port data register, the destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR register for output, however, values of bits configured by the DDR register as inputs are changed because input values to the pins are written into the output latch. To avoid this situation, configure the pins by the DDR register as output after writing output data to the PDR register when configuring the bit used as input as outputs.

• Operation as input port

The pin is configured as an input by setting the corresponding bit of the DDR register to "0".

When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance status.

When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs are unaffected.

Block diagram
 PDR (port data register)
 PDR read
 PDR write
 DDR (port direction register)
 PDR write
 DDR write
 DDR write
 DDR write
 Standby control: Stop, timebase timer mode and SPL=1, or hardware standby mode

Reading the PDR register reads out the pin level ("0" or "1")

(2) N-ch Open-drain Port

Port 5 and port 9 are general-purpose I/O ports having a combined function as resource input/output. Each pin can be switched between resource and port bitwise.

Only MB90675 series has port 9.

• Operation as output port

When a data is written into the PDR register, the data is latched to the output latch of PDR. When the output latch value is set to "0", the output transistor is turned on and the pin status is put into an "L" level output, while writing "1" turns off the transistor and put the pin in a high-impedance status.

If the output pin is pulled-up, setting output latch value to "1" puts the pin in the pull-up status.

Reading the PDR register returns the pin value (same as the output latch value in the PDR).

Note: Execution of a read-modify-write instruction (e.g. bit set instruction) reads out the output latch value rather than the pin value, leaving output latch that is not manipulated unchanged.

Operation as input port

Setting corresponding bit of the PDR register to "1" turns off the output transistor and the pin is put into a high-impedance status.

Reading the PDR register returns the pin level ("0" or "1").

• Block diagram of port 5

(3) Output Port

Port 7 is a general-purpose output port having a combined function as an output compare (OCU) output. Note that only OCU output can be output when the pin is configured as an output, and it is not used for outputting given data by writing to the data register. Each pin can be switched between an output compare output and a port bitwise.

• Operation as output port (operation of OCU output)

Setting the corresponding bit of the DDR register to "1" configures the pin as an output port. In this case, lower 4-bit of CCR01 and CCR register are output.

When configured as an output, the output buffer is turned on and data retained in the output latch in the PDR of the output compare is output to the pin.

Writing data to DOT bit of the OCU control register (CCR01, CCR11) corresponding to each pin writes data in synchronization to a match operation of the output compare and output to the pin.

Reading the PDR register returns the pin level (same as the output latch value of the PDR).

When output of output compare is enabled, an output value from the output compare can be read out.

· Operation as input port

Setting corresponding bit of the DDR register to "0" configures the pin as input port.

When the pin is configured as an input port, the output buffer is turned off and the pin is put into a high-impedance status.

Reading the PDR register returns the pin level ("0" or "1").

(4) Register Configuration

Address	bit 15 · · ·		••bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Port 0 data register
000000н	(PDR1)		P07	P06	P05	P04	P03	P02	P01	P00	(PDR0)
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15	bit 14	bit 13	bit 12	bit 1	1 bit 1	D bit 9	bit 8	bit 7.		· · · bit 0	
000001н	P17	P16	P15	P14	P13	P12	P11	P10		(PDR0)		Port 1 data register (PDR1)
	R/W	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W	-			
COM Address	bit 15 · · ·		· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000002н	(PDR3)		P27	P26	P25	P24	P23	P22	P21	P20	Port 2 data register (PDR2)
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15	bit 14	bit 13	bit 12	bit 1	1 bit 1	D bit 9	bit 8	bit 7·		· · · bit 0	
000003н	P37	P36	P35	P34	P33	P32	P31	P30		(PDR2)		Port 3 data register (PDR3)
	R/W	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W		()		(. 21.0)
Address	bit 15 · · ·		· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000004н		PDR5)		P47	P46	P45	P44	P43	P42	P41	P40	Port 4 data register (PDR4)
	t		L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(FDR4)
Address	bit 15	bit 14	bit 13	bit 12	bit 1	1 bit 1) bit 9	bit 8	hit 7.		hit 0	
000005н	P57	P56	P55	P54	P53	P52		P50		(PDR4)		Port 5 data register
0000001	R/W	R/W	R/W	R/W	R/W					(1 D(4)		(PDR5)
Address	bit 15 · · ·				bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000006н		PDR7)		P67	P66	P65	P64	P63	P62	P61	P60	Port 6 data register
	· · · · · ·		L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(PDR6)
Address	bit 15	bit 14	bit 13					bit 8				
000007н	P77	P76	P75	P74	P73	P72	P71	P70		(PDR6)		Port 7 data register
00000111	R/W	R/W	R/W	R/W	R/W							(PDR7)
Address	bit 15 · · ·				bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000008н	:				P86	P85	P84	P83	P82	P81	P80	Port 8 data register
0000001	(PDR9)	L	 R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(PDR8)
A ddroop	h:+ 15	h:+ 1 1	hit 10									
Address 000009н		bit 14		bit 12	bit 1'	1 bit 10	D bit 9	bit 8 P90		(PDR8)		Port 9 data register
000009H							-			(FDR0)		(PDR9)
Addroop	R/W	R/W	R/W							h :44	h # 0	
	bit 15 · · ·				bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Port A data register
00000Ан	(PDRB)	L	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	(PDRA)
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		bit 14	bit 13	bit 12	bit 1			bit 8	bit 7.			Port B data register
00000Вн	—	—	-		-	PB2	PB1	PB0		(PDRA))	(PDRB)
	R/W	R/W	R/W	R/W	R/W	R/W	/ R/W	R/W				

(Continued)

(Continued)

Address		•••••	·····		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Port 0 data direction registe
000010н	(DDR1)		P07	P06	P05	P04	P03	P02	P01	P00	(DDR0)
	bit 15	h:+ 1 1	h:+ 10	R/W bit 12	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address 000011 _H	P17	P16	bit 13 P15	P14	bit 11 P13	bit 10) bit 9 P11	Dit 8 P10		 (DDR0		Port 1 data direction registe
00001111	R/W	R/W	R/W	R/W	R/W	R/W		R/W				(DDR1)
Address	bit 15				bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000012H				P27	P26	P25	P24	P23	P22	P21	P20	Port 2 data direction registe
0000128	(L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(DDR2)
Address	bit 15	bit 14	hit 13					bit 8		π/ vv		
Address 000013н	P37	P36	P35	P34	P33	P32	P31	P30		(DDR2		Port 3 data direction registe
00001011	R/W	R/W	R/W	R/W	R/W	R/W		R/W			/	(DDR3)
Address					bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000014н		ADER)	·····	P47	P46	P45	P44	P43	P42	P41	P40	Port 4 data direction registe
	(*			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(DDR4)
Address	bit 15	hit 14	bit 13					bit 8				
Address 000015н	P57	P56	P55	P54	P53	P52	P51	P50	7	(DDR4		Analog input enable registe
00001011	R/W	R/W	R/W	R/W	R/W	R/W		R/W				(ADER)
Address					bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000016н		DDR7)		P67	P66	P65	P64	P63	P62	P61	P60	Port 6 data direction registe
	t	·····	L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(DDR6)
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7.		· · · bit 0	
000017 н	P77	P76	P75	P74	P73	P72	P71	P70		(DDR6)	Port 7 data direction registe (DDR7)
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address	bit 15 · · ·		· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
000018 н	(V	acancy)		_	P86	P85	P84	P83	P82	P81	P80	Port 8 data direction registe (DDR8)
	l		·····	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(DDR0)
Address	bit 15 · · ·		∙ • bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
00001AH	(DDRB)		PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	Port A data direction registe (DDRA)
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(22103)
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7·		· · · bit 0	
00001Bн	_]	_	_	-	_	PB2	PB1	PB0		(DDRA)	Port B data direction registe (DDRB)
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				· · · /

2. Timebase Timer

The timebase timer is a 18-bit free run counter (timebase counter) for counting up in synchronization to the internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from four types of 2¹²/HCLK, 2¹⁴/HCLK, 2¹⁶/HCLK, and 2¹⁹/HCLK.

The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation stabilization time or the watchdog timer etc.

(1) Register Configuration

3. Watchdog Timer

The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when the counter is not cleared for a preset period of time.

(1) Register Configuration

4. 8/16-bit PPG Timer

The 8/16-bit PPG timer is 2-channel reload timer module for outputting pulse having given frequencies/duty ratios.

The two modules performs the following operation by combining functions.

- 8-bit PPG output 2-channel independent operation mode This is a mode for operating independent 2-channel 8-bit PPG timer, in which PPG0 and PPG1 pins correspond to outputs from PPG0 and PPG1 respectively.
- 16-bit PPG output operation mode
 In this mode, PPG0 and PPG1 are combined to be operated as a 1-channel 8/16-bit PPG timer operating as
 ¹⁰a 16-bit timer. Because PPG0 and PPG1 outputs are reversed by an underflow from PPG1 outputting the same output pulses from PPG0 and PPG1 pins.
- 8 + 8-bit PPG output operation mode
 In this mode, PPG0 is operated as an 8-bit prescaler, in which an underflow output of PPG0 is used as a clock source for PPG1. A toggle output of PPG0 and PPG output of PPG1 are output from PPG0 and PPG1 respectively.

The module can also be used as a D/A converter with an external add-on circuit.

 PPG0 operating m Address t 			·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000030н	(F	PPGC1)		PEN0	—	POE0	PIE0	PUF0	PCM1	PCM0	RESV	0-00001в
 PPG1 operating m 	node co	ontrol r	egiste	^{R/W} r (PPG		R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
000031н	PEN1	PCS1	POE1	PIE1	PUF1	MD1	MD0	RES\	/	(PPGC	D)	00000001в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			'	
 PPG reload register Address to Address to	•				,PRLH bit 6	1) bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
PRLH0:000035H	(DDI											Initial value
PRLH1:000037н		H0,PRL	,									XXXXXXXX в
PRLH1:000037H			,	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	XXXXXXXX в
Address	bit 15	bit 14	bit 13					R/W bit 8			R/W	
									bit 7		···· bit 0	XXXXXXXXB Initial value XXXXXXXB
Address PRLL0:000034 _H									bit 7		···· bit 0	Initial value

(2) Block Diagram

• Block diagram of 8/16-bit PPG timer 0

• Block diagram of 8/16-bit PPG timer 1

5. 16-bit Reload Timer

The 16-bit reload timer has an internal clock mode for counting down in synchronization to three types of internal clocks and an event count mode for counting down detecting a given edge of the pulse input to the external bus pin, and either of the two functions can be selectively used.

For this timer, an "underflow" is defined as the counter value of "0000H" to "FFFFH". According to this definition, an underflow occurs after [reload register setting value + 1] counts.

In operating the counter, the reload mode for repeating counting operation after reloading a counter setting value after an underflow or the one-shot mode for stopping the counting operation after an underflow can be selectively used.

Because the timer can generate an interrupt upon an underflow, the timer conforms to the extended intelligent I/O service (EI²OS).

The MB90670/675 series has 2 channels of 16-bit reload timers.

Address	bit 15	bit 14	bit 1	3 bit 1	2 bit 1	1 bit 10	bit 9	bit 8		· · · · · · · · ·	· · · · · bit 0	Initial value
ГMCSR0:000039н ГMCSR1:00003Dн	—	-	-		CSL	1 CSL0	MOD	2 MOD1	(TMCSR	R : L)	0000
	_				R/W	R/W	R/W	R/W				
Fimer control sta	itus reais	ster lov	ver di	nits (T	MCSR		R1 · I)				
Address	bit 15···			•	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
ГMCSR0:000038н ГMCSR1:00003Сн	(TN	ICSR : H	H)	MOD1	OUTE	OUTL	RELD	INTE	UF	CNTE	TRG	0000000
	·			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
00003Eн 00003Fн	RF	R R	R	R I	R R	R R	R		R	R	R R	
	RF	R R	R	ĸı								
00003FH	ister 0, 1	(TMR	L0,T	MRL1))							
00003Fн	ister 0, 1	(TMR	L0,T	MRL1)				bit 5 bit				Initial value XXXXXXXX
00003Fн I6-bit reload reg Address 00003Ан 00003Bн 00003Eн	ister 0, 1 bit 15bit	(TMR 14bit 13	LO,T 3bit 12	MRL1) bit 11bit	10 bit 9	bit 8 bit	7 bit 6		4 bit 3	bit 2 b	bit 1 bit 0	Initial value
00003F⊦ I6-bit reload reg Address 00003A⊦ 00003B⊦	ister 0, 1 bit 15bit	(TMR	L0,T	MRL1) bit 11bit)		7 bit 6	bit 5 bit	4 bit 3	bit 2 b		Initial value XXXXXXXX XXXXXXXX
00003FH I 6-bit reload reg Address 00003AH 00003EH 00003FH R/W : Rea	ister 0, 1 bit 15bit W V	(TMR 14bit 13	L0,T Bbit 12	MRL1) bit 11bit	10 bit 9	bit 8 bit	7 bit 6		4 bit 3	bit 2 b	bit 1 bit 0	Initial value XXXXXXXX XXXXXXXX XXXXXXXXX
00003FH I6-bit reload reg Address 00003AH 00003BH 00003EH 00003FH R/W : Rea R : Read	ister 0, 1 bit 15bit W V dable and only	(TMR 14bit 13	L0,T Bbit 12	MRL1) bit 11bit	10 bit 9	bit 8 bit	7 bit 6		4 bit 3	bit 2 b	bit 1 bit 0	Initial valu XXXXXXX XXXXXXX XXXXXXX
00003FH I6-bit reload reg Address 00003AH 00003EH 00003FH R/W : Rea	ister 0, 1 bit 15bit W V dable and only only ed	(TMR 14bit 13	L0,T Bbit 12	MRL1) bit 11bit	10 bit 9	bit 8 bit	7 bit 6		4 bit 3	bit 2 b	bit 1 bit 0	Initial value XXXXXXXX XXXXXXXX XXXXXXXXX

6. 24-bit Free run Timer

The 24-bit free-run timer is a 24-bit up counter for counting up in synchronization to divided-by-3 or divided-by-4 of the machine clock, in which an interrupt factor can be selected from the overflow interrupt and four types of timer intermediate bit interrupt to be operated as an interval timer.

The free-run timer can be used to generating reference timing signals for the input capture (ICU) and output compare (OCU).

Address	bit '	5	bit 14	bit '	13 b	it 12	bit 1	1 bi	t 10	bit 9	bit	8 I	bit 7 · ·			• bit 0	Initial value
000051 н			—	RES	SV R	ESV	RES	VR	ESV	RES	/ PR	0		(TCC	R : L)		111111
			—	R/\		R/W	R/W		2/W	R/W	R/V	V					
 Free-run timer of 		-			-	•											
Address	bit 15			· · ·bit 8	3 bit	7	bit 6	bit	5	bit 4	bit 3	t	oit 2	bit 1		oit 0	Initial valu
000050н		(TCC	CR : H)	ST	P	CLR	IVF	:	IVFE	TIM	Т	IME	TIS	1 1	ГIS0	1100000в
– <i>.</i> :					W		W	R/	N	R/W	R/W	F	R/W	R/V	/ 1	R/W	
• Free-run timer ι			-	•					L '1 -		L'1 E L	••••	L'1 0	L'1 0	1.11.A	L'1 O	
Address 000056н			401013		DICT	DIT		DIT 8			bit 5 b						Initial value 00000000
000057 н	Ļ		Ļ		_	_		_	T23				-	T18		-	0000000
	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Free-run timer l			•	•		,		h:+ 0	h:+ 7	, h.H.C	hit E h		h:+ 0	h:+ 0	h:+ 1	h:+ 0	
Address 000054н			1	1						<u> </u>	bit 5 b						Initial value 0000000₀
000055H	115	T14	113	T12	111 R	110 R	T9 R	T8 R	T7 R	T6 R	T5 R	T4 R	T3 R	T2 R	T1 R	T0 R	0000000в
000055H	R	R	R	R													

7. Input Capture (ICU)

The input capture (ICU) generates an interrupt request to the CPU simultaneously with a storing operation of current counter value of the 24-bit free run timer to the ICU data register (ICDR) upon an input of a trigger edge to the external pin.

There are four sets (four channels) of the input capture external pins and ICU data registers (ICDR), enabling measurements of maximum of four events.

- The input capture has four sets of external input pins (ASR0 to ASR3) and ICU registers (ICDR), enabling measurements of maximum of four events.
- A trigger edge direction can be selected from rising/falling/both edges.
- www.DataSheet4U.coThe input capture can be set to generate an interrupt request at the storage timing of the counter value of the 24-bit free run timer to the ICU data register (ICDR).
 - The input compare conforms to the extended intelligent I/O service (EI²OS).
 - The input capture function is suited for measurements of intervals (frequencies) and pulse-widths.

 ICU control regis 	ster unn	er diait	s (IC(с. н)								
Address	bit 15	•	•	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 · ·		· · · bit 0	Initial value
000053н	IRE3	IRE2	IRE1	IRE0	IR3	IR2	IR1	IR0		(ICC : L)	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
 ICU control regis 	ster low	er digit	s (ICC):L)								
Address			•	,	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000052н	(ICC : H)		EG3B	EG3A	EG2B	EG2A	EG1B	EG1A	EG0B	EG0A	0000000в
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	• .											
ICU upper data	register Address	0 to 3	ICDF bit 15				2 bit 11	bit 10) bit 9	bit 8		Initial value
ICDR0H : 00	0063н											00000000в
ICDR1H : 00 ICDR2H : 00	006Вн		R	R	R	R	R					00000008
ICDR3H : 00	006Fн											
	Address			bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
ICDR0H : 00 ICDR1H : 00			····	D23	D22	D21	D20	D19	D18	D17	D16	XXXXXXXXB
ICDR2H : 00	006Ан		l	R	R	R	R	R	R	R	R	
ICDR3H : 00	000EH											
• ICI Llower dete r	agiatar	0 to 2 (וניםטר	`						
 ICU lower data r 	ddress	0 10 3 (bit 15			,	2 bit 11	bit 10) bit 9	bit 8		Initial value
ICDR0L:000	0061н		D15	D14	D13	D12		D10	D9	D8		XXXXXXXX
ICDR1L : 000 ICDR2L : 000	0069н		R	R	R	R	R	R	R	R		
ICDR3L : 000	006Dн											
	Address			bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
ICDR0L : 000 ICDR1L : 000			Ī	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
ICDR2L : 000 ICDR3L : 000	0068н			R	R	R	R	R	R	R	R	
R/W : Read R : Read o		writable										
— : Unuse	d											
X : Indetern	ninate											

8. Output Compare (OCU)

The output compare (OCU) is two sets of compare units consisting of four-channel OCU compare data registers, a comparator and a control register.

An interrupt request can be generated for each channel upon a match detection by performing time-division comparison between the OCU compare data register setting value and the counter value of the 24-bit free-run timer.

The DOT pin can be used as a waveform output pin for reversing output upon a match detection or a generalpurpose output port for directly outputting the setting value of the DOT bit.

(1) Register Configuration

	Address	bit 15	bit 14	bit 13	3 bit 12	bit 11	bit 10) bit 9	bit 8	bit 7 · ·		· · · · bit 0	Initial value
	000059н	—	_	—	_	MD3	MD2	MD1	MD0	(CCR00	: L)	0000
		_	_			R/W	R/W	R/W	R/W				
OCU co	ntrol registe	er 00 lo	wer dig	gits (0	CCR00	: L)							
	Address	bit 15· · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	000058н	(CC	R00 : H)	RESV	RESV	RESV	RESV	CPE3	CPE2	CPE1	CPE0	11110000
		••••••			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
OCU co	ntrol registe	er 01 u	oper di	gits (CCR01	: H)							
	Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7.		····bit 0	Initial value
	00005Вн	ICE3	ICE2	ICE1	ICE0	IC3	IC2	IC1	IC0	(CCR01 :	: L)	0000000в
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
OCU co	ntrol registe	er 01 lo	wer dig	gits (0	CCR01	: L)							
	Address	bit 15· · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	00005Ан	(CC	R01 : H)	_	_	_	_	DOT3	DOT2	DOT1	DOT0	0000
		••••••			_		_		R/W	R/W	R/W	R/W	
	R/W : Read — : Unused		writable										

(Continued)

(Continued)

(2) Block Diagram of Output Compare (OCU)

Overall block diagram

• Block diagram of unit 0

• Block diagram of unit 1

9. I²C Interface (Included Only in MB90675 Series)

The I²C interface is a serial I/O port supporting Inter IC BUS operating as master/slave devices on I²C bus and has the following features.

- Master/slave transmission/reception
- Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transmission direction detection function
- · Repeated generation function start condition and detection function
- www.DataSheet4U.eoBus error detection function

	Address	bit 15 · · ·		· ∙bit 8		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	000040н	(IBCR)		BB	RSC	AL	LRB	TRX	AAS	GCA	FBT	0000000в
					R	R	R	R	R	R	R	R	
I ² C bus c	control reg	jister (IE	BCR)										
	Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 ·		· · · bit 0	Initial value
	000041н	BER	BEIE	SCC	MSS	ACK	GCA	A INTE	INT		(IBSR)		0000000в
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
I ² C bus c	lock cont	rol regis	ter (IC	CR)									
	Address	bit 15 · · ·		· ·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	000042н		ADR)		_	_	EN	CS4	CS3	CS2	CS1	CS0	0XXXXX _B
							R/W	R/W	R/W	R/W	R/W	R/W	
I ² C addre	ess regist	er (IADF	२)										
	Address	,	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 ·		· · · bit 0	Initial value
	000043н (IADR)	_	A6	A5	A4	A3	A2	A1	A0		(ICCR)		-XXXXXXXB
	(IADK)	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W			:	
	Address	bit 15 · · ·		· · hit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
	000044н (IDAR)	(Rese	erved are	ea)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXX
		·		·····	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	R/W: Rea R : Rea — : Unu	d only		9									

10. UART0

UART0 is a general-purpose serial data communication interface for performing synchronous or asynchronous communication (start-stop synchronization system). In addition to the normal duplex communication function (normal mode), UART0 has a master/slave type communication function (multi-processor mode).

- Data buffer: Full-duplex double buffer
- Transfer mode: Clock synchronized (with start and stop bit)

Clock asynchronized (start-stop synchronization system)

- Baud rate: With dedicated baud rate generator, selectable from 12 types
 - External clock input possible

Internal clock (a clock supplied from 16-bit reload timer can be used.)

- Data length: 7 bits to 9 bits selective (with a parity bit)
 - 6 bits to 8 bits selective (without a parity bit)
- Signal format: NRZ (Non Return to Zero) system
- Reception error detection:Framing error

Overrun error

Parity error (not available in multi-processor mode)

- Interrupt request: Receive interrupt (reception complete, receive error detection)
 - Receive interrupt (transmission complete)

Transmit/receive conforms to extended intelligent I/O service (EI²OS)

• Master/slave type communication function (multi-processor mode): 1 (master) to n (slave) communication

possible

 Status register 0 (L 	JSR0)										
Address	bit 15 bit 14	bit 13 bit 12	2 bit 11	bit 10	bit 9	bit 8	bit 7∙		····bit 0	Initial value	
000021н	RDRF ORFE	PE TDR	E RIE	TIE	RBF	TBF		(UMC0)	0010000в	
	R/W R/W	R/W R/W	R/W	R/W	R/W	R/W					
 Mode control regist 	ter 0 (UMC0)										
Address	bit 15 · · · · · · · · ·	bit 8 bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
000020н	(USR0)	PEN	SBL	MC1	MC0	SMDE	RFC	SCKE	SOE	00000100в	
 Rate and data register 	ster 0 (URD0)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	. ,	bit 13 bit 12	2 bit 11	bit 10	bit 9	bit 8	bit 7.		····bit 0	Initial value	
000023н	BCH RC3	RC2 RC1	RC0	BCH0	Р	D8	(UII	DR0/UO	DR0)	0000000в	
Input data register	R/W R/W 0 (UIDR0)	R/W R/W	R/W	R/W	R/W	R/W					
Address	bit 15· · · · bit 9 bi	t 8 bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
000022н	(URD0) D	08 D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB	
	; F	R R	R	R	R	R	R	R	R		
 Output data register 	er 0 (UODR)										
Address	bit 15· · · · bit 9 bi	t 8 bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value	
000022н	(URD0) D	08 D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB	
	-	N W	W	W	W	W	W	W	W		
W W W W W W W W W R/W : Readable and writable R : Read only W: Write only X : Indeterminate											

11. UART1 (SCI)

UART1 (SCI) is a general-purpose serial data communication interface for performing synchronous or asynchronous communication (start-stop synchronization system). In addition to the normal duplex communication function (normal mode), UART1 has a master-slave type communication function (multi-processor mode).

- Data buffer: Full-duplex double buffer
- Transfer mode: Clock synchronized (no start or stop bit)
 - Clock asynchronized (start-stop synchronization system)
- Baud rate: With dedicated baud rate generator, selectable from 8 types
 - External clock input possible
 - Internal clock (a internal clock supplied from 16-bit reload timer can be used.)
- Data length: 7 bits (for asynchronous normal mode only)

8 bits

- Signal format: NRZ (Non Return to Zero) system
- Reception error detection:Framing error

Overrun error

Parity error (not available in multi-processor mode)

• Interrupt request: Receive interrupt (reception complete, receive error detection)

Receive interrupt (transmission complete)

Transmit/receive conforms to extended intelligent I/O service (El²OS)

• Master/slave type communication function (multi-processor mode):1 (master) to n (slave) communication pos-

sible (supported only for master station)

Control register 1 (Second control register 1)	CR1)			
Address 000025⊦	bit 15 bit 14 bit 13 bit 1 PEN P SBL CL	1 1 1	9 bit 8 bit 7 bit 0 (E TXE (SMR1)	Initial value 00000100⋼
Mode register 1 (SM	R/W R/W R/W R/V R1)	N R/W R/W R/	W R/W	
Address	bit 15bit 8 bit 7	bit 6 bit 5 bit 4	bit 3 bit 2 bit 1 bit 0	Initial value
000024н	(SCR1) MD1	MD0 CS2 CS1	CS0 BCH SCKE SOE	0000000в
 Status register 1 (SS 	R1) R/W	R/W R/W R/W	R/W R/W R/W R/W	
Address	, bit 15 bit 14 bit 13 bit 1	12 bit 11 bit 10 bit	9 bit 8 bit 7 bit 0	Initial value
000027 н	PE ORE FRE RDF	RF TDRE — RI	E TIE (SIDR1/SODR1)	00001-00в
 Input data register 1 	R R R R (SIDR1)	R — R/	W R/W	
Address	bit 15bit 8 bit 7	bit 6 bit 5 bit 4	bit 3 bit 2 bit 1 bit 0	Initial value
000026н	(SSR1) D7	D6 D5 D4	D3 D2 D1 D0	XXXXXXXXB
Output data register	1 (SODR1)	RRR	RRRR	
Address	bit 15 ····· bit 8 bit 7	bit 6 bit 5 bit 4	bit 3 bit 2 bit 1 bit 0	Initial value
000026н	(SSR1) D7	D6 D5 D4	D3 D2 D1 D0	XXXXXXXXB
R/W : Reada R : Read o W : Write — : Unuse X : Indete	only	w w w	w w w w	

12. DTP/External Interrupt Circuit

The DTP (Data Transfer Peripheral)/external interrupt circuit is located between peripheral equipment connected externally and the F²MC-16L CPU and transmits interrupt requests or data transfer requests generated by peripheral equipment to the CPU, generates external interrupt request and starts the extended intelligent I/O service (El²OS).

(1) Register Configuration

Г

	Address	bit 15	bit 14	bit 13	bit 12		bit 10	bit 9	bit 8	-		Initial value				
	000029н	—	—	—		ER3	ER2	ER1	ER0		(ENIR)	0000в			
		—	—	—	_	R/W	R/W	R/W	R/W							
• DTP/	/interrupt	enable	registe	r (EN	NR)											
	Address b	oit 15 · · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value			
	000028н	(EIRR)		_	_	_	_	EN3	EN2	EN1	EN0	0000 в			
					_			_	R/W	R/W	R/W	R/W				
• Requ	uest level	setting	registe	r (EL	VR)											
	Address b	oit 15 · · ·		· bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value			
	00002Ан	(V	acancy)		LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	0000000в			
				•••••	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				

13. Wake-up Interrupt

Wake-up interrupts transmits interrupt request ("L" level) generated by peripheral device located between external peripheral devices and the $F^2MC-16L$ CPU to the CPU and invokes interrupt processing.

The interrupt does not conform to the extended intelligent I/O service (EI²OS).

(1) Register Configuration

• Wal	ke-up interi	rupt fla	g regis	ter (Ell	FR)						
	Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 bit 0	
et4U.com	00000 F н	_	_	_	_	-	_	_	WIF	(Vacancy)	Initial value 0 в
		_	_	_	_		_	_	R/W		
• Wa	ke-up interi	rupt en	able re	gister	(EICR)						
	Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 \cdots bit 0	Initial value
	00001Fн	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	(Vacancy)	0000000в
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	<u></u> t	
		Readabl									

14. Delayed Interrupt Generation Module

The delayed interrupt generation module generates interrupts for switching tasks for development on a realtime operating system (REALOS software). The module can be used to generate hardware interrupt requests to the CPU with software and cancel the interrupt requests.

This module does not conform to the extended intelligent I/O service (EI²OS).

(1) Register Configuration

15. 8/10-bit A/D Converter

The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input voltage) to digital values (A/D conversion) and has the following features.

- Minimum conversion time: 6.13 μ s (at machine clock of 16 MHz, including sampling time)
- Minimum sampling time: 3.75 µs (at machine clock of 16 MHz)
- Conversion method: RC successive approximation method with a sample and hold circuit.
- Resolution: 10-bit or 8-bit selective
- · Analog input pins: Selectable from eight channels by software

One-shot conversion mode: Stops conversion after completing a conversion for a stopped channel (one

channel only) or for successive channels (maximum of eight channels can be

DataSheet411.com

specified)

Continuous conversion mode:Continues conversions for a specified channel (one channel only) or for successive channels (maximum of eight channels can be specified)

- Stop conversion mode:Stops conversion after completing a conversion for one channel and wait for the next activation.
- Interrupt requests can be generated and the extended intelligent I/O service (EI²OS) can be started after the end of A/D conversion.
- When interrupts are enabled, there is no loss of data even in continuous operations because the conversion data protection function is in effect.
- Starting factors for conversion:Selected from software activation, 16-bit reload timer 1 output (rising edge), and external trigger (falling edge).

A/D control sta	itus regi	ister up	oper c	ligits (A	DCS:	H)						
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7		· · · · bit 0	Initial value
00002Dн	BUSY	INT	INTE	PAUS	STS1	STS	D STR	T RES	/	(ADCS:	L)	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	/ W	R/W				
A/D control sta	itus regi	ister lo	wer d	igits (Al	DCS: L	_)						
Address	bit 15 · · ·		• • bit 8	bit 7	bit 6	, bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00002Сн	(A	DCS: H)		MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	0000000в
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
A/D data regist	ter (AD(CR)										
Address	LO AREAS		1.1.40 F									Left all sectors
///////////////////////////////////////	DIT 15 DIT	14 bit 13	DIT 12 D	IT TI DIT TO		DIT 8 DIT	7 bit 6	bit 5 bit	4 bit 3	bit 2 bi	t 1 bit 0	Initial value
00002Eн	S10 -	14 bit 13 	DIT 12 D					D5 D			01 D0	Initial value XXXXXXXXB 0000000XB
		14 bit 13 					7 D6		4 D3	D2 E		XXXXXXXXB
00002Eн	S10 -		_	<u> </u>	D9	D8 D	7 D6	D5 D	4 D3	D2 E	D1 D0	XXXXXXXXB
00002Eн R/W : I	S10 – R/W –	- e and wr	_	<u> </u>	D9	D8 D	7 D6	D5 D	4 D3	D2 E	D1 D0	XXXXXXXXB
00002Eн R/W : R :	S10 – R/W –	- e and wr	_		D9	D8 D	7 D6	D5 D	4 D3	D2 E	D1 D0	XXXXXXXXB
00002Eн R/W : I R : W: Y	S10 — R/W — Readable Read onl	- e and wr	_	<u> </u>	D9	D8 D	7 D6	D5 D	4 D3	D2 E	D1 D0	XXXXXXXXB

16. Low-power Consumption (Standby) Mode

The F²MC-16L has the following CPU operating mode configured by selection of an operating clock and clock operation control.

Clock mode

PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation clock (HCLK).

Main clock mode: A mode in which the CPU and peripheral equipment are driven by divided-by-2 of the oscillation clock (HCLK).

The PLL multiplication circuits stops in the main clock mode.

• CPU intermittent operation mode

www.DataSheet4U.coThe CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU intermittently while external bus and peripheral functions are operated at a high-speed.

• Hardware stand-by mode

The hardware standby mode is a mode for reducing power consumption by stopping clock supply (sleep mode) to the CPU by the low-power consumption control circuit, stopping clock supplies to the CPU and peripheral functions (timebase timer mode), and stopping oscillation clock (stop mode, hardware standby mode). Of these modes, modes other than the PLL clock mode are power consumption modes.

Address	j ister (C bit 15	bit 14	, bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7		···· bit 0	Leffel contract
0000A1н	RESV	МСМ	WS1	WS0	RESV	MCS	CS1	CS0		(LPMC	R)	Initial value 11111100 в
	R/W	R	R/W	R/W	R/W	R/W	W	R/W				
Low-power cons	sumptic	on mod	e cor	ntrol reg	jister (L	.PMCF	२)					
Address	bit 15 · · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
0000А0н	(C	CKSCR)		STP	SLP	SPL	RST	RESV	CG1	CG0	RESV	00011000 B
	••••••			W	W	R/W	W	R/W	R/W	R/W	R/W	
R/W	: Readal	ole and v	vritable	9								
R	: Read o	only										
W	: Write o	nly										

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss-0.3	Vss + 7.0	V	
Power supply voltage	AVcc	Vss-0.3	Vss + 7.0	V	*1
4U.com	AVRH, AVRL	Vss-0.3	Vss + 7.0	V	*1
Input voltage	Vi	Vss-0.3	Vcc + 0.3	V	*2
Output voltage	Vo	Vss-0.3	Vcc + 0.3	V	*2
"L" level maximum output current	lol		15	mA	*3
"L" level average output current	Iolav		4	mA	*4
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	ΣΙοιαν		50	mA	*5
"H" level maximum output current	Іон		-15	mA	*3
"H" level average output current	Іонач		-4	mA	*4
"H" level total maximum output current	ΣІон		-100	mA	
"H" level total average output current	ΣΙοήαν		-50	mA	*5
Power consumption	PD		400	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

*1:AVcc shall never exceed Vcc. AVRH shall never exceed Vcc and AVcc. Also, AVRL shall never exceed Vcc, AVcc and AVRH.

*2:V_I and V₀ shall never exceed V_{cc} + 0.3 V.

*3: The maximum output current is a peak value for a corresponding pin.

*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.

*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	2.7	5.5	V	Normal operation
Power supply voltage	Vcc	2.0	5.5	V	Retains status at the time of opera- tion stop
Operating temperature	TA	-40	+85	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

Parameter	Symbol		/cc = Vcc = 2.7 ∖ Condition		Value		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
	Vн	Pins other than Vins and Vinm		0.7 Vcc	_	Vcc + 0.3	V	
4U.com	Vihs	Hysteresis input pins P24 to P27, P40 to P47, P60 to P67, P70 to P77, P80, HST, RST		0.8 Vcc	_	Vcc + 0.3	V	MB90670 series
"H" level in- put voltage	Vihs	Hysteresis input pins P24 to P27, P40 to P47, P60 to P67, P70 to P77, <u>P80 to P86, HST,</u> RST, P90, P91, PA0 to PA7, PB0 to PB2		0.8 Vcc	_	Vcc + 0.3	V	MB90675 series
	Vihm	MD pin input		Vcc - 0.3	_	Vcc + 0.3	V	
	VIL	Pins other than VILS and VILM		Vss – 0.3	_	0.3 Vcc	V	
	Vils	Hysteresis input pins P24 to P27, P40 to P47, P60 to P67, P70 to P77, P80, HST, RST		Vss - 0.3	_	0.2 Vcc	V	MB90670 series
"L" level in- put voltage	Vils	Hysteresis input pins P24 to P27, P40 to P47, P60 to P67, P70 to P77, <u>P80 to P86, HST,</u> RST, P90, P91, PA0 to PA7, PB0 to PB2		Vss - 0.3	_	0.2 Vcc	V	MB90675 series
	Vilm	MD pin input		Vss – 0.3	—	Vss + 0.3	V	
"H" level output volt-	Vон	Other than P50 to P57	Vcc = 4.5 V Іон = -4.0 mA	Vcc-0.5	_		V	
age	Vон	Other than P50 to P57	Vcc = 2.7 V Іон = –1.6 mA	Vcc-0.3	_	_	V	
"L" level output volt-	Vol	All output pins	Vcc = 4.5 V IoL = 4.0 mA	_	_	0.4	V	
age	Vol	All output pins	Vcc = 2.7 V lo _L = 2.0 mA	_	_	0.4	V	
Open-drain output leak- age current	lleak	P50 to P57, P90, P91 ^{*1}			0.1	10	μA	

(AVcc = Vcc = 2.7 V to 5.5 V, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)

(Continued)

(Continued)

Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
Input leak- age current	I⊫	Other than P50 to P57, P90 and P91	Vcc = 5.5 V Vss < Vi < Vcc	-10		10	μA	
Pull-up re-	R	—	Vcc = 5.0 V	25	45	100	kΩ	
sistance Pull-down	R	—	Vcc = 3.0 V	40	95	200	kΩ	
	R	_	Vcc = 5.0 V	25	50	200	kΩ	
resistance	R	—	Vcc = 3.0 V	40	100	400	kΩ	
	Icc	_	Internal opera- tion at 16 MHz Vcc at 5.0 V	_	50	70	mA	Normal op- eration*2
	Iccs	_	Internal opera- tion at 16 MHz Vcc at 5.0 V	_	10	30	mA	In sleep mode*2
Power sup- ply current	Icc		Internal opera- tion at 8 MHz Vcc at 3.0 V	_	12	20	mA	Normal op eration*2
	Iccs		Internal opera- tion at 8 MHz Vcc at 3.0 V	_	2.5	10	mA	In sleep mode* ²
	Іссн		T _A = +25°C	_	0.1	10	μΑ	In stop mode and hardware standby mode ^{*2}
Input ca- pacitance	CIN	Other than AVcc, AVss, Vcc, Vss	_	_	10	_	pF	

*1: Only MB90675 series has P90 and P91 pins.

*2: The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice.

4. AC Characteristics

(1) Reset Input Timing, Hardware Standby Input Timing

$(AVcc = Vcc = 2.7 V \text{ to } 5.5 V, AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to}$										
Perometer	Symbol	Pin name	Condition	Va	lue	Unit	Bomorko			
Parameter	Symbol Pin nar		Condition	Min.	Max.	Unit	Remarks			
Reset input time	t rstl	RST		16 tcp*	—	ns				
Hardware standby input time	t HSTL	HST		16 t _{CP} *	—	ns				

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

(2)Specification for Power-on Reset

				(AVs	s = Vss = 0.	0 V, TA	$= -40^{\circ}C \text{ to } +85^{\circ}C)$
Baramatar	Symbol	Pin name	Condi-	Va	lue	Unit	Remarks
Parameter	Symbol	Fin name	tion	Min.	Max.	Unit	Reindiks
Power supply rising time	t R	Vcc		_	30	ms	*
Power supply cut-off time	toff	Vcc	—	1		ms	Due to repeated operations

*: Vcc must be kept lower than 0.2 V before power-on.

Notes : • The above ratings are values for causing a power-on reset.

- When HST is set to "L" level, apply power according to this table to cause a power-on reset irrespective of whether or not a power-on reset is required.
- For built-in resources in the device, re-apply power to the resources to cause a power-on reset.
- There are internal registers which can be initialized only by a power-on reset. Apply power according to this rating to ensure initialization of the registers.

Vcc	0.2 V 0.2 V 0.2 V
•	r supply voltage may cause a power-on reset. voltage while the device is in operation, it is recommended to raise the voltage
e	•
To change the power supply smoothly to suppress fluctuat	•
smoothly to suppress fluctuat Main power	•
smoothly to suppress fluctuat	•
smoothly to suppress fluctuat Main power supply voltage	•

(3) Clock Timing

• Operation at 5.0 V ± 10%

Deservator	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	Fin name	Condition	Min.	Тур.	Max.	Unit	Remarks
Clock frequency	Fc	X0, X1		3		32	MHz	
Clock cycle time	tc	X0, X1		31.25		333	ns	
Input clock pulse width	Р _{WH} , Рwl	X0		10	_		ns	Recommended duty ratio of 30% to 70%
Input clock rising/falling time	tcr, tc⊧	X0	_		—	5	ns	
Internal operating clock fre- quency	fср	_	-	1.5	_	16	MHz	
Internal operating clock cycle time	tcp	_		62.5	_	666	ns	
Frequency fluctuation rate locked	Δf	P37/CLK				3	%	*

*: The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

The PLL frequency deviation changes periodically from the preset frequency "(about $CLK \times (1CYC \text{ to } 50 \text{ CYC})$ ", thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).

•	$(AV_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$							
Parameter	Condi-	Value			Unit	Remarks		
Faiameter	Symbol	Pin name	tion	Min.	Тур.	Max.	Onic	itema ka
Clock frequency	Fc	X0, X1	-	3	_	16	MHz	
Clock cycle time	tc	X0, X1		62.5		333	ns	
Input clock pulse width	Р _{WH} , Р _{WL}	X0		20	_		ns	Recommended duty ratio of 30% to 70%
Input clock rising/falling time	tcr, tcf	X0	_		_	5	ns	
Internal operating clock fre- quency	fср	_		1.5	_	8	MHz	
Internal operating clock cycle time	t _{CP}	_		125	_	666	ns	
Frequency fluctuation rate locked	Δf	P37/CLK				3	%	*

• Operation at Vcc = 2.7 V (minimum value)

*: The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

The PLL frequency deviation changes periodically from the preset frequency "(about $CLK \times (1CYC \text{ to } 50 \text{ CYC})$ ", thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).

The AC ratings are measured for the following measurement reference voltages.

(4) Recommended Resonator Manufacturers

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequen- cy (T _A = +25°C)	Temperature char- acteristics of FAR frequency $(T_A = -20^{\circ}C to +60^{\circ}C)$	Loading ca- pacitors* ²
FAR-C4 C-2000- 20	2.00	510 Ω	±0.5%	±0.5%	Built-in
FAR-C4 A-4000- 01	4.00	—	±0.5%	±0.5%	Built-in
FAR-C4 B-4000- 02	4.00	—	±0.5%	±0.5%	Built-in
FAR-C4 B-4000- 00	4.00	—	±0.5%	±0.5%	Built-in
FAR-C4 B-8000- 02	8.00	—	±0.5%	±0.5%	Built-in
FAR-C4 B-12000- 02	12.00	—	±0.5%	±0.5%	Built-in
FAR-C4 B-16000- 02	16.00	—	±0.5%	±0.5%	Built-in
FAR-C4 B-20000-L14B	20.00	—	±0.5%	±0.5%	Built-in
FAR-C4 B-24000-L14A	24.00	—	±0.5%	±0.5%	Built-in
Inquiry: FUJITSU MEDIA	DEVICES LIN	IITED			

Sample application of ceramic resonator

Mask ROM product

www.DataSheet4U.com

Resonator manufacturer	Resonator	Frequency (MHz)	C₁ (pF)	C2 (pF)	R
	KBR-2.0MS	2.00	150	150	Not required
	PBRC-2.00A	2.00	150	150	Not required
	KBR-4.0MSA	4.00	33	33	680 Ω
	KBR-4.0MKS	4.00	Built-in	Built-in	680 Ω
	PBRC4.00A	4.00	33	33	680 Ω
	PBRC4.00B	4.00	Built-in	Built-in	680 Ω
	KBR-6.0MSA	6.00	33	33	Not required
K and k	KBR-6.0MKS	6.00	Built-in	Built-in	Not required
Kyocera Corporation	PBRC6.00A	6.00	33	33	Not required
Corporation	PBRC6.00B	6.00	Built-in	Built-in	Not required
	KBR-8.0M	8.00	33	33	560 Ω
	PBRC8.00A	8.00	33	33	Not required
	PBRC8.00B	8.00	Built-in	Built-in	Not required
	KBR-10.0M	10.00	33	33	330 Ω
	PBRC10.00B	10.00	Built-in	Built-in	680 Ω
	KBR-12.0M	12.00	33	33	330 Ω
	PBRC-12.00B	12.00	Built-in	Built-in	680 Ω
	CSA2.00MG040	2.00	100	100	Not required
	CST2.00MG040	2.00	Built-in	Built-in	Not required
	CSA4.00MG040	4.00	100	100	Not required
Murata	CST4.00MGW040	4.00	Built-in	Built-in	Not required
Mfg. Co., Ltd.	CSA6.00MG	6.00	30	30	Not required
	CST6.00MGW	6.00	Built-in	Built-in	Not required
-	CSA8.00MTZ	8.00	30	30	Not required
	CST8.00MTW	8.00	Built-in	Built-in	Not required

(Continued)

Resonator manufacturer	Resonator	Frequency (MHz)	C₁ (pF)	C₂ (pF)	R
	CSA10.0MTZ	10.00	30	30	Not required
	CST10.0MTW	10.00	Built-in	Built-in	Not required
	CSA12.0MTZ	12.00	30	30	Not required
	CST12.0MTW	12.00	Built-in	Built-in	Not required
Murata	CSA16.00MXZ040	16.00	15	15	Not required
Murata Mfg. Co., Ltd.	CST16.00MXW0C3	16.00	Built-in	Built-in	Not required
Mig. CO., Ltd.	CSA20.00MXZ040	20.00	10	10	Not required
	CSA24.00MXZ040	24.00	5	5	Not required
	CST24.00MXW0H1	24.00	Built-in	Built-in	Not required
	CSA32.00MXZ040	32.00	5	5	Not required
	CST32.00MXW040	32.00	Built-in	Built-in	Not required
TDK Corporation	FCR4.0MC5	4.00	Built-in	Built-in	Not required

One-time product

Resonator	Resonator	Frequency	C_{1} (pE)	C₂ (pF)	R	
manufacturer	Resonator	(MHz)	C₁ (pF)	C2 (pr)	N N	
	CSTCS4.00MG0C5	4.0	Built-in	Built-in	Not required	
NA	CST8.00MTW	8.00	Built-in	Built-in	Not required	
Murata Mfg. Co., Ltd.	CSACS8.00MT	8.00	30	30	Not required	
Wilg. CO., Ltd.	CSA10.0MTZ	10.00	30	30	Not required	
	CST10.0MTW	10.00	Built-in	Built-in	Not required	
TDK Corporation	FCR4.0MC5	4.00	Built-in	Built-in	Not required	

Inquiry:Kyocera Corporation

AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

•AVX Limited

European Sales Headquarters: TEL 44-1252-770000

•AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303

Murata Mfg. Co., Ltd.

•Murata Electronics North America, Inc.: TEL 1-404-436-1300

•Murata Europe Management GmbH: TEL 49-911-66870

•Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

TDK Corporation

TDK Corporation of America

Chicago Regional Office: TEL 1-708-803-6100

•TDK Electronics Europe GmbH

Components Division: TEL 49-2102-9450

•TDK Singapore (PTE) Ltd.: TEL 65-273-5022

•TDK Hongkong Co., Ltd.: TEL 852-736-2238

•Korea Branch, TDK Corporation: TEL 82-2-554-6633

(5) Clock Output Timing

	$(AV_{CC} = V_{CC} = 2.7 \text{ V to } 5.5 \text{V}, AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$											
Parameter	Symbol	Din namo	Condition	Va	lue	Unit	Remarks					
		FIII IIdille	Condition	Min.	Max.	Unit	Remains					
Cycle time	tcyc	CLK	—	1 t cp*	—	ns						
$CLK \uparrow \rightarrow CLK \downarrow$	t CHCL	CLK	Vcc = 5.0 V ± 10 %	1 tcp*/2 – 20	1 t _{CP} */2 + 20	ns	5.0 V ± 10 % is ± 20					
	t CHCL	CLK	$Vcc = 3.0 \text{ V} \pm 10 \text{ \%}$	1 tcp*/2 – 35	1 t _{CP} */2 + 35	ns	3.0 V ± 10 % is ± 35					

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

(6) Bus Read Timing

(o) Bus Read Timing		(AVcc =	Vcc = 2.7 V to 5.5 V	V, AVss = Vss	= 0.0 V, T _A =	-40°C	C to +85°C)
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falameter	Symbol	Fininame	Condition	Min.	Max.	Unit	
ALE pulse width	t lhll	ALE	Vcc = 5.0 V ±10%	1 tcp*/2 – 20	_	ns	
ALE puise width	t lhll	ALE	$Vcc = 3.0 V \pm 10\%$	1 tcp*/2 – 35	_	ns	
Effective address \rightarrow	tavll	AD15 to AD00	Vcc = 5.0 V ±10%	1 tcp*/2 – 25		ns	
ALE \downarrow time	tavll	AD15 to AD00	Vcc = 3.0 V ±10%	1 tcp*/2 - 40		ns	
$ \begin{array}{c} \text{ALE} \downarrow \rightarrow \text{address effective time} \\ \end{array} $	t llax	AD15 to AD00		1 tcp*/2 – 15		ns	
Effective address $\rightarrow \overline{RD}$ \downarrow time	t avrl	AD15 to AD00		1 tcթ* – 15	_	ns	
Effective address \rightarrow	t avdv	AD15 to AD00	Vcc = 5.0 V ±10%	_	$5 t_{CP}*/2 - 60$	ns	
read data time	t avdv	AD15 to AD00	Vcc = 3.0 V ±10%	—	5 t _{CP} */2 - 80	ns	
RD pulse width	t rlrh	RD	—	3 tc₽*/2 − 20		ns	
$\overline{RD} \downarrow \rightarrow read data time$	trldv	AD15 to AD00	Vcc = 5.0 V ±10%	—	3 t _{CP} */2 - 60	ns	
$RD \downarrow \rightarrow read$ data time	t rldv	AD15 to AD00	Vcc = 3.0 V ±10%	—	$3 t_{CP}*/2 - 80$	ns	
$\overline{RD} \uparrow \rightarrow data hold time$	t RHDX	AD15 to AD00		0	_	ns	
$\overline{RD} \uparrow \rightarrow ALE \uparrow time$	t RHLH	RD, ALE	Ť	1 tcp*/2 – 15	_	ns	
$\overline{RD} \uparrow \rightarrow address disappear time$	t RHAX	RD, A19 to A16		1 tcp*/2 – 10		ns	
Effective address \rightarrow CLK \uparrow time	tavch	CLK, A19 to A16		1 tcp*/2 – 20	—	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		1 tcp*/2 - 20		ns	

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

(7) Bus Write Timing

		(AVcc =)	Vcc = 2.7 V to 5.5 V	/, AVss = Vss	= 0.0 V, Ta =	-40°0	C to +85°C)
Parameter	Symbol	Pin name	Condition	Val	Unit	Remarks	
Farameter	Symbol	Fill liame	Condition	Min.	Max.	Unit	itema ka
Effective address $\rightarrow \overline{WR}$ \downarrow time	t avwl	A19 to A00		1 tcթ – 15	—	ns	
WR pulse width	t wlwh	WR		3 tc₽*/2 – 20	_	ns	
Write data $\rightarrow \overline{\text{WR}} \uparrow$ time	tovwн	AD15 to AD00		3 t _{CP} */2 - 20	—	ns	
$\overline{WR} \uparrow \rightarrow data hold time$	twhdx	AD15 to AD00	$Vcc = 5.0 \text{ V} \pm 10\%$	20		ns	
	t whdx	AD15 to AD00	$Vcc = 3.0 V \pm 10\%$	30		ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{address} \mathrm{disappear}$ time	t whax	A19 to A00		1 tcp*/2 – 10	—	ns	
$\overline{WR} \uparrow \rightarrow ALE \uparrow time$	twhlh	WRL, ALE		1 t _{CP} */2 - 15		ns	
$\overline{WR}\downarrow \to CLK\uparrowtime$	twlcн	WRH, CLK		1 t _{CP} */2 - 20		ns	

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

(8) Ready Input Timing

$(AV_{CC} = V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$										
Parameter	Symbol Pin name	Din namo	Condition	Val	lue	Unit	Remarks			
		Condition	Min.	Max.	Unit	Nellia KS				
RDY setup time	t RYHS	RDY	Vcc = 5.0 V ±10%	45	_	ns				
	t RYHS	RDY	Vcc = 3.0 V ±10%	70	_	ns				
RDY hold time	t ryhh	RDY	—	0		ns				

Note : Use the auto-ready function when the setup time for the rising of the RDY signal is not sufficient.

(9) Hold Timing

(AVcc = Vcc = 2.7 V to 5.5 V, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Pin name	Condition	Va	Unit	Remarks	
			Condition	Min.	Max.	Unit	Rellidiks
$\begin{array}{l} \text{Pins in floating status} \rightarrow \\ \overline{\text{HAK}} \downarrow \text{time} \end{array}$	t xhal	HAK	_	30	1 t _{CP} *	ns	
$\overline{HAK} \uparrow \rightarrow pin valid time$	tнанv	HAK		1 tcp*	2 tcp*	ns	

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

Note : More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.

		(AVc	cc = Vcc = 2.7 V to 5.10	.5 V, AVss =	Vss = 0.0 V,	T A = -	-40°C to +85°C)	
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Falameter	Symbol		Condition	Min.	Max.	onit	Remarks	
Serial clock cycle time	tscyc	—	—	8 tcp*	—	ns		
$SCK \downarrow \to SOT$ delay	t slov		Vcc = 5.0 V ±10%	- 80	80	ns	Internal shift	
time	t slov		Vcc = 3.0 V ±10%	- 120	120	ns	clock mode	
Valid SIN \rightarrow SCK \uparrow	t ivsh	_	Vcc = 5.0 V ±10%	100	—	ns	C∟ = 80 pF	
	t ivsh	_	Vcc = 3.0 V ±10%	200	—	ns	+ 1 TTL for an	
$SCK \uparrow \rightarrow valid SIN hold time$	tsнıx	—		1 tcp*		ns	output pin	
Serial clock "H" pulse width	t shsl	_		4 t _{CP} *	_	ns		
Serial clock "L" pulse width	tslsh	_		4 t cp*		ns	External shift	
$SCK \downarrow \rightarrow SOT delay$	tslov	_	Vcc = 5.0 V ±10%	_	150	ns	clock mode	
time	tslov	_	Vcc = 3.0 V ±10%	_	200	ns	C∟ = 80 pF + 1 TTL for an	
Valid SIN → SCK ↑	tıvsн	_	Vcc = 5.0 V ±10%	60		ns	output pin	
	t ivsh	_	Vcc = 3.0 V ±10%	120	—	ns	o alp at pin	
SCK $\uparrow \rightarrow$ valid SIN hold	t shix	_	Vcc = 5.0 V ±10%	60		ns		
time	t shix	_	Vcc = 3.0 V ±10%	120	—	ns		

(10) UART0 Timing

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

Notes : • These are AC ratings in the CLK synchronous mode.

• CL is the load capacitor connected to pins while testing.

	Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
	Farameter	Symbol		Condition	Min.	Max.	Unit	Remarks
S	Serial clock cycle time	tscyc	_	—	8 tcp*	_	ns	
S	SCK $\downarrow \rightarrow$ SOT delay	t slov		$Vcc = 5.0 V \pm 10\%$	- 80	80	ns	Internal shift
time Valid SIN \rightarrow SCK \uparrow	t slov		$Vcc = 3.0 V \pm 10\%$	- 120	120	ns	clock mode	
	t ivsh	_	Vcc = 5.0 V ±10%	100	_	ns	C∟ = 80 pF	
v		tıvsн	_	Vcc = 3.0 V ±10%	200	_	ns	+ 1 TTL for an
	time SCK $\uparrow \rightarrow$ valid SIN hold	tsнix	_		1 tcp*	_	ns	output pin
	Serial clock "H" pulse vidth	tshsl	—		4 tcp*	_	ns	
	Serial clock "L" pulse vidth	t slsh	—		4 t _{CP} *	_	ns	External shift
S	SCK $\downarrow \rightarrow$ SOT delay	t slov		$Vcc = 5.0 V \pm 10\%$	—	150	ns	clock mode
ti	me	t slov	_	Vcc = 3.0 V ±10%	—	200	ns	C∟ = 80 pF + 1 TTL for an
V	Valid SIN \rightarrow SCK \uparrow trv SCK \uparrow \rightarrow valid SIN hold ts	t ivsh	_	Vcc = 5.0 V ±10%	60	_	ns	output pin
v		t ivsh	_	Vcc = 3.0 V ±10%	120	_	ns	output pill
S		tsнıx	_	Vcc = 5.0 V ±10%	60	_	ns	
ti		t shix	_	Vcc = 3.0 V ±10%	120	_	ns	

(11) UART1 Timing

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

Notes : • These are AC ratings in the CLK synchronous mode.

 \bullet CL is the load capacitor connected to pins while testing.

(12) Timer Input Timing

$(AV_{CC} = V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$										
Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks			
	Symbol Fill hame		Condition	Min.	Max.	Unit	Remarks			
Input pulse width	tтıwн, tтıw∟	TIN0, TON1	_	4 tcp*	_	ns				

* : For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

(13) Timer Output Timing

(AVcc = Vcc = 2.7 V to 5.5 V, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol Pin name		Condition	Val	Unit	Remarks	
Farameter	Symbol	i in name	Condition	Min.	Max.	Unit	I CIIIal KS
$CLK \uparrow \to T_{OUT}$	tтo	TOT0, TOT1	Vcc = 5.0 V ±10%	30	_	ns	
transition time	tтo	TOT0, TOT1	Vcc = 3.0 V ±10%	80		ns	

(14) I²C Timing

		(A)	$Vcc = Vcc = 5.0 V \pm 1$			$T_A = -$	40°C to +85°C)
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
Falailletei	Symbol	Fininame	Condition	Min.	Max.	Unit	Remarks
SCL clock frequency	fscl	_		0	100	kHz	
Bus free time between stop and start conditions	teus			4.7	_	μs	
Hold time (re-transmission) start	t hdsta			4.0	_	μs	The first clock pulse is gener- ated after this period.
LOW status hold time of SCL clock	tLOW	_		4.7	_	μs	
HIGH status hold time of SCL clock	tніgн	_		4.0	_	μs	
Setup time for conditions for starting re-transmission	t susta	_	—	4.7	_	μs	
Data hold time	t hddat	_		0	_	μs	
Data setup time	t sudat	—		250	_	ns	
Rising time of SDA and SCL signals	tR			_	1000	ns	
Falling time of SDA and SCL signals	t⊧	_		_	300	ns	
Setup time for stop con- ditions	t susto			4.0	_	μs	

(^) (17 E 0 1/ 1400/ A1/ ٠, 1000 10

Note : Only MB90675 series has I²C.

5. A/D Converter Electrical Characteristics

Demonster			Condition		Value		11
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit
Resolution	—			_		10	bit
Total error				_	_	±3.0	LSB
Linearity error	—			_	—	±2.0	LSB
Differential linearity error	—			_	_	±1.5	LSB
Zero transition voltage	Vот	AN0 to AN7		AVRL – 1.5 LSB	AVRL + 0.5 LSB	AVRL + 2.5 LSB	mV
Full-scale transition voltage	Vfst	AN0 to AN7		AVRH - 4.5 LSB	AVRH - 1.5 LSB	AVRH + 0.5 LSB	mV
Conversion time	_	_	$V_{CC} = 5.0 V \pm 10\%$ at machine clock of 16 MHz	6.125			μs
	_	_	$V_{CC} = 3.0 \text{ V} \pm 10\%$ at machine clock of 8 MHz	12.25	_	_	μs
Analog port input current	IAIN	AN0 to AN7		_	0.1	10	μΑ
Analog input voltage	VAIN	AN0 to AN7		AVRL		AVRH	V
Reference voltage		AVRH	—	AVRL - 2.7	_	AVcc	V
		AVRL		0	_	AVRH - 2.7	V
	la	AVcc		_	3		mA
Power supply current	Іан	AVcc	Supply current when CPU stopped and A/D converter not in operation $(V_{CC} = AV_{CC} =$ AVRH = 5.0 V)	_	_	5	μΑ
	Ir	AVRH	—	_	200	_	μΑ
Reference voltage supply cur- rent	Irh	AVRH	Supply current when CPU stopped and A/D converter not in operation $(V_{CC} = AV_{CC} =$ AVRH = 5.0 V)	_	_	5	μΑ
Offset between channels	_	AN0 to AN7	_	_	_	4	LSB

6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

Linearity error:The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of 7 k Ω or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling time for analog voltages may not be sufficient (sampling time = $3.75 \,\mu$ s @machine clock of 16 MHz).

• Error

The smaller the | AVRH – AVRL |, the greater the error would become relatively.

■ EXAMPLE CHARACTERISTICS

(1) "H" Level Output Voltage

(2) "L" Level Output Voltage

(5) Power Supply Current (fcp = Internal Operating Clock Frequency)

■ MASK OPTIONS

• MB90670 series

No.	Part number	MB90671 MB90672 MB90673	MB90P673	MB90V670
	Specifying procedure	Specify when ordering masking	Set with EPROM pro- grammer	Setting not possible
ei4U.con 1	Pull-up resistors P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P67, P70 to P77, P80, RST, MD1, MD0	Specify by pin	Specify by pin	Without pull-up resistor
2	Pull-down resistors MD1, MD0	Specify by pin	Specify by pin	Without pull-up resistor

MB90675 series

No.	Part number	MB90676 MB90677 MB90678	MB90P678	MB90V670
	Specifying procedure	Specify when ordering masking	Set with EPROM pro- grammer	Setting not possible
1	Pull-up resistors P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P67, P70 to P77, P80 to P86, P90, P91, PA0 to PA7, PB0 to PB2, RST, MD1, MD0	Specify by pin	Specify by pin	Without pull-up resistor
2	Pull-down resistors MD1, MD0	Specify by pin	Specify by pin	Without pull-up resistor

Notes : • The pull-up register configured as a port pin is switched-off in the stop mode and during the hardware standby.

• In turning on power, option settings can not be made until clocks are supplied because 8 machine cycles are needed for option settings for the MB90P670/P675.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90671PFV MB90672PFV MB90673PFV MB90T673PFV MB90P673PFV	80-pin Plastic LQFP (FPT-80P-M05)	
MB90671PF MB90672PF 4MB90673PF MB90T673PF MB90P673PF	80-pin Plastic QFP (FPT-80P-M06)	
MB90676PFV MB90677PFV MB90678PFV MB90T678PFV MB90P678PFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB90676PF MB90677PF MB90678PF MB90T678PF MB90P678PF	100-pin Plastic QFP (FPT-100P-M06)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0111 © FUJITSU LIMITED Printed in Japan