Typical Applications

- CDMA/FM Cellular Systems
- Supports Dual-Mode AMPS/CDMA
- Supports Dual-Mode TACS/CDMA
- General Purpose Downconverter
- Commercial and Consumer Systems
- Portable Battery Powered Equipment

Product Description

The RF9906 is a receiver front-end designed for the receive section of dual-mode CDMA/FM cellular applications. It is designed to amplify and down-convert RF signals while providing 9 dB of gain control range. Noise Figure, IP3, and other specs are designed to be compatible with the IS-95 Interim Standard for CDMA cellular communications. This circuit is designed as part of the RFMD CDMA Chip Set, consisting of this Receive LNA/ Mixer, a Receive IF AGC Amp, a Transmit IF AGC Amp, and a Transmit Upconverter. The IC is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and is packaged in a standard miniature 24-lead plastic SSOP package.

Optimum Technology Matching® Applied

Functional Block Diagram

Features

- Complete Receiver Front-End
- Analog Gain Control
- Single 3.6V Power Supply
- Buffered LO Output
- Digitally Selectable IF Outputs
- 500 MHz to 1500 MHz Operation

Ordering Information
 RF9906 CDMA/FM Low Noise Amplifier/Mixer
 RF9906 PCBA Fully Assembled Evaluation Board

WWW.DataSheet4U.com

RF9906

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +5.0	$\mathrm{~V}_{\mathrm{DC}}$
Input LO and RF Levels	+3	$\mathrm{dBm}^{\circ} \mathrm{Co}$
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does no assume responsibility for the use of the described product(s)

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall RF Frequency Range LO Frequency Range IF Frequency Range		$\begin{aligned} & 500 \text { to } 1500 \\ & 500 \text { to } 1500 \\ & 0.1 \text { to } 250 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{RF}=881 \mathrm{MHz}, \\ & \mathrm{LO}=966 \mathrm{MHz} @-5 \mathrm{dBm} \end{aligned}$
Cascaded Performance to IF1 Cascade Conversion Gain, Maximum Cascade Conversion Gain, Minimum Cascade IP3 Cascade Noise Figure	27.5 -15	$\begin{array}{r} 30 \\ 21 \\ -13 \\ 2.6 \end{array}$	33 3.4	dB dBm dB	CDMA Mode, IF SEL. $=2.9 \mathrm{~V}, 1 \mathrm{k} \Omega$ balanced load, 2.5 dB Image Filter Loss. By varying the gain of the second stage, a trade-off of gain and noise figure against IP3 can be made. $V_{G} \leq 0,2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{G}} \geq 2.5 \mathrm{~V}$ Referenced to input at Maximum Gain Single sideband, at Maximum Gain Setting
Cascaded Performance to IF2 Cascade Conversion Gain, Maximum Cascade Conversion Gain, Minimum Cascade IP3 Cascade Noise Figure	18.5	$\begin{gathered} 21 \\ 12 \\ -12.5 \\ 3.0 \\ \hline \end{gathered}$	24 4.0	dB dB dBm dB	FM Mode, IF SEL. $=0 \mathrm{~V}, 850 \Omega$ load, 2.5 dB Image Filter Loss. By varying the gain of the second stage, a trade-off of gain and noise figure against IP3 can be made. $\mathrm{V}_{\mathrm{G}} \leq 0.2 \mathrm{~V}$ $V_{G} \geq 2.5 \mathrm{~V}$ Referenced to input at Maximum Gain Single sideband, at Maximum Gain Setting
First Section (LNA) Noise Figure Input VSWR Input IP3 Gain Reverse Isolation Output VSWR		$\begin{gathered} 1.5 \\ <1.5: 1 \\ -8 \\ 16 \\ 23 \\ <1.5: 1 \end{gathered}$		$\begin{gathered} \mathrm{dB} \\ \mathrm{dBm} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$	The LNA section may be left unused. Power is not connected to pin 1 . The performance is then as specified for the Second Section (Mixer).

$\square \quad$ RF9906

RF9906

Pin	Function	Description	Interface Schematic
1	VCC1	Supply voltage for the LNA. External RF and IF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
2	GND	Ground connection. Keep traces physically short and connect immediately to ground plane for best performance.	
3	LNA IN	RF input pin. This pin is internally DC blocked and matched to 50Ω.	
4	GND	Same as pin 2.	
5	IF2	FM IF output pin. This is a single-ended output with an output impedance set by an internal 850Ω resistor to V_{CC}. The resistor sets the operating impedance, but an external choke or matching inductor to V_{CC} must be supplied in order to correctly bias this output. This inductor is typically incorporated in the matching network between the output and $I F$ filter. Because this pin is biased to V_{cC}, a DC blocking capacitor must be used if the IF filter input has a DC path to ground.	
6	GND	Same as pin 2.	
7	IF SELECT	Selects which IF output (IF1 or IF2) is used. This is a digitally controlled input. A logic "high" selects IF1. A logic "low" selects IF2. The threshold voltage is approximately 1.3 V .	
8	GND	Same as pin 2.	
9	IF 1+	CDMA IF output pin. This is a balanced output. The output impedance is set by an internal 500Ω resistor to $\mathrm{V}_{\mathrm{C}} \mathrm{C}$. Thus the output impedance of each pin is 500Ω, whereas the differential output impedance is 1000Ω. The resistor sets the operating impedance, but an external choke or matching inductor to $V_{C C}$ must be supplied in order to correctly bias this output. This inductor is typically incorporated in the matching network between the output and IF filter. Because this pin is biased to $V_{C C,}$ a DC blocking capacitor must be used if the IF filter input has a DC path to ground.	
10	IF 1-	Same as pin 9 except complementary input.	See pin 9.
11	GC	Analog gain adjustment for both IF output buffer amplifiers. A $10 \mathrm{k} \Omega$ source impedance is required for proper operation of the gain control circuitry. Valid control voltages, on the source side of the $10 \mathrm{k} \Omega$ resistor, are from 0 V to 2.9 V . Minimum gain is selected with 2.4 V to 2.9 V . Maximum gain is selected with 0 V to 0.2 V . When operating the RF9906 at fixed maximum gain, this pin should be grounded through a $10 \mathrm{k} \Omega$ resistor. Do not connect this pin directly to ground (see Application Schematic for example).	
	$s^{\text {VCC2 }}$	Supply Voltage for the Mixer, LO Buffer Amplifier, and IF Buffer Amplifiers. External RF and IF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
13	LO IN+	Mixer LO Balanced Input Pin. This pin is internally DC biased and should be DC blocked if connected to a device with DC present. For single-ended input operation, one pin is used as an input and the other mixer LO input is AC coupled to ground. The single-ended input impedance is 50Ω.	
14	LO IN-	Same as pin 13, except complementary input.	See pin 13.

wWw.DataSheet4U.com

RF9906

8

SaNE-INOY」

www.DataSheet4U.com

8
www.DataSheet4U.com

RF9906

