DATA SHEET

Part No.	AN18208A
Package Code No.	LQFP048-P-0707A

Panasonic

Contents

Overview	3
■ Features	3
■ Applications	3
■ Package	3
■ Туре	3
Application Circuit Example	4
■ Pin Descriptions	5
■ Absolute Maximum Ratings	7
Operating Supply Voltage Range	7
■ Allowable Voltage Range	8
Electrical Characteristics	9
Electrical Characteristics (Reference values for design)	11
Electrical Characteristics Test Procedures	14
■ Technical Data	16
• I ² C-bus interface	16
• I/O block circuit diagrams and pin function descriptions	27
• $P_D - T_a$ diagram	35
■ Usage Notes	36
Special attention and precaution in using	36

Panasonic

AN18208A Tuner IC for home-audio stereo set

Overview

AN18208A is a IC for a radio of home-audio use. As for FM portion, FM IF to FM MPX are integrated. As for AM portion, AM-RF to AM detector are integrated. FM/AM PLL synthesizer with pre-scale function is also integrated. Therefore, AN18208A can achieve the most function of radio.

Features

- AM : RF + MIX + L-OSC, FM/AM : IF + DET, FM-MPX, PLL
- I²C-bus control
- 19 kHz pilot cancel + Anti-birdie noise function
- FM detector coil less
- Separation adjustment free

Applications

• Tuner, radio

Package

• 48 pin Plastic Low Profile Quad Flat Package (QFP Type)

■ Туре

• Silicon Monolithic Bipolar IC

Application Circuit Example

Panasonic

Pin Descriptions

Pin No.	Pin name	Туре	Description
1	AM SM/FM AFC	Input / Output	AM signal meter / FM-AFC
2	FM 1IF IN	Input	FM 1st IF amp input
3	FM DETPASS2	Input / Output	FM detector bypass 2
4	FM DETPASS1	Input / Output	FM detector bypass 1
5	FM LOSCBUFIN	Input	FM local OSC buffer input
6	PCANDET	Input / Output	Level detector for MPX pilot canceller
7	VCC (Logic)	Power supply	Logic-V _{CC}
8	GND (Logic)	Ground	Logic-GND, Charge Pump GND
9	CPOUT	Output	Charge pump output
10	VCC2 (CP)	Power supply	Charge pump-V _{CC}
11	XOSC1	Input	Crystal oscillator
12	N.C.		N.C. (OPEN in IC)
13	VDD selector	Input	VDD selector
14	SCL	Input	Serial clock input (SCL)
15	SDA	Input / Output	Serial data input / output (SDA)
16	ZAP	Input	Pulse input for ZAP (Leave it open.)
17	N.C.		N.C. (OPEN in IC)
18	N.C.		N.C. (OPEN in IC)
19	N.C.		N.C. (OPEN in IC)
20	N.C.		N.C. (OPEN in IC)
21	TUNED/Test/FM S-Meter	Output	TUNED / Test monitor output / FM S-Meter
22	Lch OUT	Output	L-ch. de-emphasis output (External capacitor 0.0056 μ F: Time constant = 50 μ s)
23	ST IND	Output	FM Stereo indicator
24	Rch OUT	Output	R-ch. de-emphasis output (External capacitor 0.0056 μ F: Time constant = 50 μ s)
25	FM MPX IN	Input	FM MPX input
26	FM/AM DET	Output	FM/AM detector output
27	AM AF IN	Input	AM AF input
28	PD MPXVCO	Input / Output	Phase detector for MPX-VCO
29	PD ST IND	Input / Output	Phase detector for MPX stereo detector
30	N.C.		N.C. (OPEN in IC)

Panasonic

■ Pin Descriptions (continued)

Pin No.	Pin name	Туре	Description
31	VCC	Power supply	VCC
32	GND	Ground	GND
33	AM IF IN	Input	AM IF amp. input
34	AM AGC	Input / Output	AM-AGC level detector
35	AM MIX	Output	AM mixer output
36	FMNUL/VCO	Input / Output	MPX-VCO frequency adjustment / FM detector center adjustment
37	AM RF IN	Input	AM RF input
38	AM RF BIAS	Input / Output	AM RF input reference bias
39	AM LOSC	Input / Output	AM local oscillator load
40	FM SMADJ	Input / Output	FM signal meter adjustment
41	N.C.		N.C. (OPEN in IC)
42	N.C.		N.C. (OPEN in IC)
43	N.C.		N.C. (OPEN in IC)
44	N.C.		N.C. (OPEN in IC)
45	FM 2IF IN	Input	FM 2nd IF amp. input
46	GND(IF)	Ground	GND for IF amp.
47	FE-SW	Output	FM FE block switch control
48	FM 1IF OUT	Output	FM 1st IF amp. output

Absolute Maximum Ratings

Note) Absolute maximum ratings are limit values which are not destructed, and are not the values to which operation is guaranteed.

A No.	Parameter	Symbol	Rating	Unit	Notes
1	Sumply voltage	V _{CC1}	10.5	V	*1
1	Suppry vonage	V _{CC2}	11.5	v	.1
2	Supply current	I _{CC}	60	mA	_
3	Power dissipation	P _D	294	mW	*2
4	Operating ambient temperature	T _{opr}	-20 to +85	°C	*3
5	Storage temperature	T _{stg}	-55 to +150	°C	*3

Notes)*1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2 : The power dissipation shown is the value at $T_a = 85^{\circ}C$ for the independent (unmounted) IC package without a heat sink. When using this IC, refer to the • P_D-T_a diagram in the Technical Data and design the heat radiation with sufficient margin so that the allowable value might not be exceeded based on the conditions of power supply voltage, load, and ambient temperature.

*3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

Operating supply voltage range

Parameter	Symbol	Range	Unit	Notes
Summilie and the second second	V _{CC1}	8.0 to 10.0	V	*
Supply voltage range	V _{CC2}	8.0 to 11.0	v	

Note) *: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

V_{CC2} is VCC for charge pump.

V_{CC2} is VCC for charge pump.

Panasonic

Allowable Voltage Range

 Notes)
 Allowable voltage ranges are limit ranges which are not destructed, and are not the ranges to which operation is guaranteed. Voltage values, unless otherwise specified, are with respect to GND. GND is voltage for GND(Logic), GND(IF), GND. GND = GND(Logic) = GND(IF) = GND Do not apply external currents or voltages to any pin not specifically mentioned. Please make Pin16 open.

 Pin No.
 Pin name
 Rating
 Unit
 Notes

Pin No.	Pin name	Rating	Unit	Notes
1	AM SM/FM AFC	-0.3 to (V _{CC1} +0.3)	V	*1
2	FM 1IF IN	-0.3 to (V _{CC1} + 0.3)	V	*1
3	FM DETPASS2	-0.3 to (V _{CC1} +0.3)	V	*1
4	FM DETPASS1	-0.3 to (V _{CC1} +0.3)	V	*1
5	FM LOSCBUFIN	-0.3 to (V _{CC1} + 0.3)	V	*1
6	PCANDET	-0.3 to (V _{CC1} +0.3)	V	*1
11	XOSC1	-0.3 to (V _{CC1} + 0.3)	V	*1
13	VDD selector	-0.3 to (V _{CC1} + 0.3)	V	*1
14	SCL	- 0.3 to 5.3	V	_
15	SDA	- 0.3 to 5.3	V	_
25	FM MPX IN	-0.3 to (V _{CC1} + 0.3)	V	*1
27	AM AF IN	-0.3 to (V _{CC1} + 0.3)	V	*1
28	PD MPXVCO	-0.3 to (V _{CC1} + 0.3)	V	*1
29	PD ST IND	-0.3 to (V _{CC1} +0.3)	V	*1
33	AM IF IN	-0.3 to (V _{CC1} + 0.3)	V	*1
34	AM AGC	-0.3 to (V _{CC1} + 0.3)	V	*1
36	FMNUL/VCO	-0.3 to (V _{CC1} + 0.3)	V	*1
37	AM RF IN	-0.3 to (V _{CC1} + 0.3)	V	*1
38	AM RF BIAS	-0.3 to (V _{CC1} +0.3)	V	*1
39	AM LOSC	-0.3 to (V _{CC1} + 0.3)	V	*1
40	FM SMADJ	-0.3 to (V _{CC1} + 0.3)	V	*1
45	FM 2IF IN	-0.3 to (V _{CC1} +0.3)	V	*1

Note) *1 : (V_{CC1} + 0.3) V must not be exceeded 10.5 V

Panasonic

Electrical Characteristics at $V_{CC1} = 9.0 \text{ V}, V_{CC2} = 10 \text{ V}$ Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

в	Deremeter	C) mah al	Conditions		Limits		l lucit	Natas
No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	notes
AM	f _c = 999 kHz							
1	AM-quiescent current	amIt	No input, Current from V _{CC1}	14	28	42	mA	*1
2	AM output 1	amVo1	$V_{IN3} = 30 \text{ dB}\mu$, 1 kHz, 30% AM output	52	92	172	mV[rms]	_
3	AM output 2	amVo2	$V_{IN3} = 74 \text{ dB}\mu$, 1 kHz, 30% AM output	128	208	288	mV[rms]	_
4	AM-S/N ratio 1	amSN	$V_{IN3} = 30 \text{ dB}\mu$, 1 kHz, 30% AM output S/N	17	23		dB	_
5	AM-S/N ratio 2	amSN	V _{IN3} = 74 dBµ, 1 kHz, 30% AM output S/N	47	53		dB	_
6	AM THD 1	amT1	V _{IN3} = 74 dBµ, 1 kHz, 30% output distortion factor		0.4	1.1	%	
7	AM THD 2	amT2	V _{IN3} = 103 dBµ, 1 kHz, 30% output distortion factor		0.5	2.0	%	_
8	AM-SD sensitivity	amSDS	0% mod Sens set (I ² C) = X'C'	33	43	53	dBµ	
FM m	nono $f_c = 10.7 \text{ MHz}$				•			
9	FM-RDS output	fmRDS	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 100%	320	480	640	mV[rms]	
10	FM-quiescent current 1	fmIt1	No input, Current supplied from V _{CC1}	26	38	50	mA	*1
11	FM-quiescent current 2	fmIt2	No input, Current supplied from V _{CC2}	53	105	160	μΑ	*1
12	FM output	fmVo	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 100% output	650	850	1050	mV[rms]	_
13	FM-S/N ratio	fmSN	$V_{IN2} = 100 \text{ dB}\mu$, 1 kHz, 100% FM output S/N	68	74		dB	
14	FM-mono THD	fmTm1	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 100% output distortion factor	_	0.2	1.3	%	_
15	FM-SD sensitivity	fmSDS	0% mod Sens set $(I^2C) = X'5'$	52	62	72	dBµ	_
16	FM-mute ratio	fmMUTE	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 100% output ratio to fmVo (mute on)	54	78		dB	

Note) *1 : No input = $-10 \text{ dB}\mu$ or less.

Panasonic

Electrical Characteristics (continued) at $V_{CC1} = 9.0 \text{ V}, V_{CC2} = 10 \text{ V}$ Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

в	Deremeter	Symbol	Candiliana	Limits			Linit	Notos
No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	notes
FM st	tereo f _c = 10.7 MHz							
17	FM-L-ch. separation	fmSepL	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 90% L-ch. output separation	30	40	_	dB	_
18	FM-R-ch. separation	fmSepR	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, 90% R-ch. output separation	30	40	_	dB	_
19	FM-stereo THD	fmTs1	$V_{IN2} = 80 \text{ dB}\mu$, 1 kHz, stereo (L + R) 90% output distortion factor	_	0.25	1.5	%	
20	FM-birdy noise output 1	fmBN1	fs = 113 kHz, 90%, pilot = 10% output leve (1 kHz) FM : 100% mod	30	40	_	dB	
21	FM-birdy noise output 2	fmBN2	fs = 189 kHz, 90%, pilot = 10% output level (1 kHz) FM : 100% mod	34	48		dB	
22	FM-carrier-leak	fmCL	pilot = 10% output level	35	53	_	dB	
23	FM-stereo detect sensitivity	fm _{STON}	$V_{IN2} = 80 \text{ dB}\mu$, fp = 19 kHz	1.3	3.0	5.0	%	_
FM m	nono $f_c = 10.7 \text{ MHz}$							
24	FM limiting sensitivity	fmVlim	1 kHz, 100% of output – 3 dB (Ref. input level Vin2 = 80 dBµ)		45	56	dBµ	_
25	AM suppression ratio	AMR	$V_{1N2} = 100 \text{ dB}\mu, \text{ fm} = 1 \text{ kHz} \\ AM : 30\% \text{ mod} \\ FM : 100\% \text{ mod} \\ \end{cases}$	54	68	_	dB	

Electrical Characteristics (Reference values) at $V_{CC1} = 9.0 \text{ V}$, $V_{CC2} = 10 \text{ V}$ Notes) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified. The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

В	Description			Reference values		11.24		
No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
FM F	ESW		•					
26	FM FE SW current	I _{FMFE}	FM mode		_	1.0	mA	
PLL								
27	Charge pump output pull-up current	Icpup	120 μA mode Pin 9 output current	90	129	170	μΑ	
28	Charge pump output pull-down current	Icpdown	120 μA mode Pin 9 input current	-170	-120	-72	μΑ	
I ² C in	terface							
29	ACK Low-level output voltage	V _{ACK}	ACK Pin 15 voltage $I = 3 \text{ mA}$	0		0.4	V	
30	Low-level output voltage 1	V _{OL1}	$V_{DD} > 2 V$ IP50 = 3 mA	0	_	0.4	V	_
31	High-level input voltage 1	V _{IHI_5}	Voltage which recognized that SDA and SCL are High-level 5 V mode Pin 13 : GND	3.5		5.5	V	
32	Low-level input voltage 1	V _{ILO_5}	Voltage which recognized that SDA and SCL are Low-level 5 V mode Pin 13 : GND	- 0.5		1.5	V	
33	High-level input voltage 2	V _{IHI_3}	Voltage which recognized that SDA and SCL are High-level 3 V mode Pin 13 : OPEN	2.1		3.5	V	
34	Low-level input voltage 2	V _{ILO_3}	Voltage which recognized that SDA and SCL are Low-level 3 V mode Pin 13 : OPEN	- 0.5		0.9	V	
35	Input current each I/O pin at 5 V mode	Ii5	5 V mode, $V_{IN} = 0.5$ V to 4.5 V	-10		10	μΑ	
36	Input current each I/O pin at 3 V mode	Ii3	3 V mode, $V_{IN} = 0.3$ V to 2.7 V	-10	_	10	μA	_
37	SCL maximum frequency	$\mathbf{f}_{\mathrm{SCL}}$	-		_	400	kHz	*2

Panasonic

Electrical Characteristics(Reference values for design)(continued)at V_{CC1} = 9 V, V_{CC} = 10 V

Notes) $T_a = 25^{\circ}C\pm 2^{\circ}C$ unless otherwise specified. The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

в	Deremeter	Cumph al	Reference values		1.1.0.14	Natas		
No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	notes
I ² C I	nterface (Fast-mode)							
38	Hysteresis of Schmitt trigger inputs 1	Vhys1	5 V mode Pin 13 : GND	0.25		_	V	*2
39	Hysteresis of Schmitt trigger inputs 1	Vhys2	3 V mode Pin 13 : OPEN	0.15	_	_	V	*2
40	Output fall time from V_{IHmin} to V_{ILmax}	Tof	Bus capacitance : 10 pF to 400 pF Ip < 6 mA	$20 + 0.1 \times C_b$		250	ns	*2
41	Pulse width of spikes which must be suppressed by the input filter	t _{SP}	—	0		50	ns	*2
42	Capacitance for each I/O pin	Ci	Bus capacitance : 10 pF to 400 pF			10	pF	*2
43	Hold time (repeated)	t _{HD:STA}	The first clock pulse is generated after t _{HD:STA}	0.6		_	μs	*2
44	Low period of the SCL clock	t _{LOW}		1.3	_	_	μs	*2
45	High period of the SCL clock	t _{HIGH}		0.6			μs	*2
46	Set-up time for a repeat START condition	t _{SU:STA}		0.6			μs	*2
47	Data hold time	t _{HD:DAT}	—	0		0.9	μs	*2
48	Data set-up time	t _{SU:DAT}	—	100	—		ns	*2
49	Rise time of both SDA and SCL signals	t _r	—	$\begin{array}{c} 20 + \\ 0.1 \times C_b \end{array}$		300	ns	*2
50	Fall time of both SDA and SCL signals	t _f	_	$20 + 0.1 \times C_b$		300	ns	*2
51	Set-up time of STOP condition	t _{SU:STO}		0.6			μs	*2
52	Bus free time between a STOP and START condition	t _{BUF}	—	1.3		_	μs	*2
53	Capacitive load for each bus line	C _b				400	pF	*2

Panasonic

Electrical Characteristics(Reference values for design)(continued)at V_{CC1} = 9 V, V_{CC} = 10 V

Notes) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified. The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

в	Deremeter	Symbol	ol Conditions	Symbol Conditions Reference values			Linit	Notes			
No.	Palameter	Symbol	Conditions	Min	Тур	Max		notes			
I ² C Interface (Fast-mode) (continued)											
54	Noise margin at the Low-level for each connected device	V_{aL1}	5 V mode Pin 13 : GND	0.5		_	v	*2			
55	Noise margin at the High-level for each connected device	$\mathbf{V}_{\mathrm{aH1}}$	5 V mode Pin 13 : GND	1.0			v	*2			
56	Noise margin at the Low-level for each connected device	V _{aL2}	3 V mode Pin 13 : OPEN	0.3			v	*2			
57	Noise margin at the High-level for each connected device	V _{aH2}	3 V mode Pin 13 : OPEN	0.6			v	*2			

Sr : Repeat START condition

P: STOP condition

Notes) *2 : The timing of Fast-mode devices in I²C-bus is specified as above.

Panasonic

Electrical Characteristics Test Procedures

			Input		Output			Pin se	ttings		
No.	Parameter	Pin No.	Conditions	Pin No.	Conditions	V _{CC1}	V _{cc2}	SW1	SW2	SW3	SW4
AM											
1	AM-quiescent current		No signal			9 V	10 V	2	1	2	2
2	AM output 1	37	$f = 999 \text{ kHz}, V_{IN3} = 30 \text{ dB}\mu$ fs = 1 kHz, AM : 30% mod	22	30 kHz LPF	9 V	10 V	2	1	2	2
3	AM output 2	37	$f = 999 \text{ kHz}, V_{IN3} = 74 \text{ dB}\mu$ fs= 1 kHz, AM : 30% mod	22	30 kHz LPF	9 V	10 V	2	1	2	2
4	AM-S/N ratio 1	37	$f = 999 \text{ kHz}, V_{IN3} = 30 \text{ dB}\mu$ fs = 1 kHz, AM : 30% S/N	22	30 kHz LPF	9 V	10 V	2	1	2	2
5	AM-S/N ratio 2	37	$f = 999 \text{ kHz}, V_{IN3} = 74 \text{ dB}\mu$ fs = 1 kHz, AM : 30% S/N	22	30 kHz LPF	9 V	10 V	2	1	2	2
6	AM THD 1	37	$f = 999 \text{ kHz}, V_{IN3} = 74 \text{ dB}\mu$ fs = 1 kHz, AM : 30% mod	22	30 kHz LPF	9 V	10 V	2	1	2	2
7	AM THD 2	37	$\label{eq:response} \begin{array}{l} f = 999 \ kHz, \\ V_{IN3} = 110 \ dB\mu, \\ fs = 1 \ kHz, \ AM : 30\% \ mod \end{array}$	22	30 kHz LPF	9 V	10 V	2	1	2	2
8	AM-SD sensitivity	37	f = 999 kHz, AM : 0% mod	21	$27 \text{ k}\Omega$ pull-up	9 V	10 V	2	1	2	2
FM	mono										
9	FM-RDS output	2	$V_{IN2} = 80 \text{ dB}\mu$, fs = 1 kHz FM : 100% mod	26	30 kHz LPF	9 V	10 V	2	1	2	2
10	FM-quiescent current 1		No signal		_	9 V	10 V	2	1	2	2
11	FM-quiescent current 2		No signal		_	9 V	10 V	2	1	2	2
12	FM output	2	$\label{eq:1} \begin{array}{l} f = 10.7 \mbox{ MHz} \\ V_{IN2} = 80 \mbox{ dB}\mu, \\ fs = 1 \mbox{ kHz}, FM : 100\% \mbox{ mod} \end{array}$	22 24	30 kHz LPF	9 V	10 V	2	1	2	2
13	FM-S/N ratio	2	$f = 10.7 \text{ MHz}, V_{IN2} = 100 \text{ dB}\mu, FM : 100% L-ch S/N$	22 24	30 kHz LPF	9 V	10 V	2	1	2	2
14	FM-mono THD	2	$\label{eq:1} \begin{array}{l} f = 10.7 \mbox{ MHz} \\ V_{IN2} = 80 \mbox{ dB}\mu, \\ fs = 1 \mbox{ kHz}, FM : 100\% \mbox{ mod} \end{array}$	22 24	30 kHz LPF	9 V	10 V	2	1	2	2
15	FM-SD sensitivity	2	f = 10.7 MHz, 0 % mod	21	$27 \text{ k}\Omega$ pull-up	9 V	10 V	2	1	2	2
16	FM-mute ratio	2	$f = 10.7 \text{ MHz}, V_{IN2} = 80 \text{ dB}\mu fs = 1 \text{ kHz}, FM : 100\% \text{ mod}$	22 24	30 kHz LPF	9 V	10 V	2	1	2	2

Panasonic

			Input		Output			Pin se	ttings		
No.	Parameter	Pin No.	Conditions	Pin No.	Conditions	V _{CC1}	V _{CC2}	SW1	SW2	SW3	SW4
FM	stereo			·			•				
17	FM-L-ch. separation	2	$ f = 10.7 \text{ MHz} \\ V_{IN2} = 80 \text{ dB}\mu, 1 \text{ kHz}, \\ (L = 90\%, \text{ pilot} = 10\%) $	22	15 kHz LPF	9 V	10 V	2	1	1	1
18	FM-R-ch. separation	2	f = 10.7 MHz, V _{IN2} = 80 dBµ, 1 kHz, (R = 90%, pilot = 10%)	24	15 kHz LPF	9 V	10 V	2	1	1	1
19	FM-stereo THD	2	f = 10.7 MHz, V _{IN2} = 80 dBµ, 1 kHz, (L + R = 90%, pilot = 10%)	22 24	15 kHz LPF	9 V	10 V	2	1	1	1
20	FM-birdie-noise output 1	25	113 kHz = 90% 19 kHz = 10%	22	15 kHz LPF	9 V	10 V	2	2	1	2
21	FM-birdie-noise output 2	25	189 kHz = 90% 19 kHz = 10%	22	15 kHz LPF	9 V	10 V	2	2	1	2
22	FM-carrier-leak	45	$f = 10.7 \text{ MHz} V_{IN2} = 80 \text{ dB}\mu fs = 19 \text{ kHz} (pilot = 10%)$	22 24		9 V	10 V	2	1	2	2
23	FM-stereo detect sensitivity	45	$\label{eq:10.7} \begin{array}{l} f = 10.7 \mbox{ MHz}, \\ V_{\rm IN2} = 80 \mbox{ dB}\mu, \\ fs = 19 \mbox{ kHz} \end{array}$	23	27 kΩ pull-up	9 V	10 V	2	1	2	2
FM	FM mono $f_c = 10.7 \text{ MHz}$										
24	FM limiting sensitivity	45	1 kHz, 100% of output – 3 dB (Ref. input level $V_{IN2} = 80 \text{ dB}\mu$)	22	30 kHz LPF	9 V	10 V	2	1	2	2
25	AM suppression ratio	45	$V_{IN2} = 100 \text{ dB}\mu$, fm = 1 kHz, AM : 30% mod FM : 100% mod	22	30 kHz LPF	9 V	10 V	2	1	2	2

■ Electrical Characteristics Test Procedures (continued)

Technical Data

- I²C-bus interface
- 1. Basic Rules
 - This IC, I²C-bus, is designed to correspond to the Standard-mode (100 kbps) and Fast-mode(400 kbps) devices in the version 2.1 of Philips Co.'s specification. However, it does not correspond to the H_s -mode (to 3.4 Mbps).
 - This IC will be operated as a slave device in the I²C-bus system.
 - The program operation check of this IC has not been conducted on the multi-master bus system and the mix-speed bus system, yet. The connected confirmation of this IC to the CBUS receiver also has not been checked. Please confirm our company if it will be used in these mode systems.
 - Purchase of Panasonic I²C Components conveys a license under the Philips I²C patent right to use these components in an I²C systems, provided that the system conforms to the I²C standard specifications as defined by Philips.

2. START and STOP conditions

A High to Low transition on the SDA line while SCL is High is one such unique case. This situation indicates a START condition. A Low to High transition on the SDA line while SCL is High defines a STOP condition. START and STOP conditions are always generated by the master. After START condition occur, the bus will be busy. The bus is considered to be free again a certain time after the STOP condition.

3. Transferring Data

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.

Panasonic

- Technical Data (continued)
- I²C-bus interface (continued)
- 4. DATA format
 - 1) Write mode
 - 1.1) Slave address : 1011 0110 (B6H)
 - 1.2) Format

• Data update mode

2) Read mode

- 2.1) Subaddress : None
- 2.2) Slave address : 1011 0111 (B7H)
- 2.3) Format

Ex.) In case data is read from Address 01h after data is written to Address 01h.

• Write	S	Slave address	0	Α	Sub address 01h	Α	Data byte	Ā	Р
• Read	S	Slave address	1	Α	Data byte	Ā	Р		

Panasonic

Technical Data (continued) I²C-bus interface (continued) 5. Register Map

Sub	MSB			DATA	BYTE			LSB		
Address	D7	D6	D5	D4	D3	D2	D1	D0		
00	PLL-CP Current Select (ICO)	FM SD Wi (DFDW2 -	dth Adjust DFDW1)		FM and SD Tuned Level Adjust (DSS4 - DSS0)					
01	AM SD Hysteresis Control (AMHIS)	PLL-Ref Frequency Select (RO)	CP Select (FCPS)	Mute ON/OFF MATX (MUS)	Stereo Tuning Selector (TUS)	Force Monaural (FOM)	SD Mode Switch (SDS)	FM/AM Switch (FAS)		
02	PLL-N Divider (N7-N0)									
03			PLL-N Divider (N13 - N8)							
04	FM IF AMP STOP (LIMSTOP)	OSC Buffer Stop (VMOS3)	Charge Pu (PHD1	mp Control - PHD0)		Analog/Logic (DS3	Signal Monito - DS0)	or		
05		Adjustment Mo	ode: FM Detect (DE5 -	or Adjustment DE0)	/ Write Mode		Read / Write Mode (ZRW)	Adjustment Mode (EMU)		
06						Adjustme Adju	nt Mode: MPX istment / Write (SE2 – SE0)	Separation Mode		
07							CIS selection (CIS)	AM IF AMP Stop (D070)		

Technical Data (continued)

I²C-bus interface (continued)
Sub address byte and data byte format (Write mode)

Tuner-control (Gr SUB-ADD 00H (\	oup 1) Vrite)										
Bit	Name		Function								
LSB : D0	DSS0	FM and AM-SD tuned level adjust	M								
D1	DSS1	High : Sensitivity low	Alvi.								
D2	DSS2	Low : Sensitivity high This sensitivity is affected by an external RF amp. gain. Ex.)									
D3	DSS3										
D4	DSS4	FM : X'5' AM : X'C'									
		It is recommended to set "0" for DSS4.	It is recommended to set "0" for DSS4.								
D5	DFDW1	FM SD band width adjust	DFDW1	DFDW2	Width	7					
			0	0	50 kHz	-					
		_	1	0	75 kHz						
D6	DEDW2		0	1	100 kHz						
Do			1	1	Select OFF						
		PLL-charge pump current select									
		120 $\mu A \rightarrow$ Fast lock up time 30 $\mu A \rightarrow$ S/N improvement	ICO	lcp	[µA]						
MSB : D7	ICO		0	1	20						
			1	3	30						
		Normal : 120 µA									

Technical Data (co	ntinued)
--------------------	----------

Tuner-control (Gi SUB-ADD 01H (\	roup 2) Write)									
Bit	Name		Function							
LSB : D0	FAS	FM / AM switch 0: FM 1: AM								
DI	SDS	$ \begin{array}{l} SD \mbox{ mode switch (FM / AM IF counter)} \\ 1 : SD \mbox{ mode (IF counter : ON)} \\ AM \mbox{ AGC-time-constant select} \\ 0 : 500 \mbox{ k}\Omega 1 : 10 \mbox{ k}\Omega \\ IF \mbox{ counter is activated by setting this bit to} \\ And \mbox{ an inside impedance of AM-AGC is} \\ A \mbox{ time constant becomes 1/50 in the case} \\ \end{array} $	SD mode switch (FM / AM IF counter) 1 : SD mode (IF counter : ON) AM AGC-time-constant select 0 : 500 k Ω 1 : 10 k Ω IF counter is activated by setting this bit to "1" at I ² C stop condition. And an inside impedance of AM-AGC is changed at AM. A time constant becomes 1/50 in the case of "1". *1)							
D2	FOM	Force monaural 1 : monaural SUB detection and VCO stop. So IC is changed to monaural mode								
D3	TUS	Selector to force monaural when stereo indicator is off. 0: ON 1: OFF								
D4	MUS	Mute switch 1 : ON Output AF buffer amp. mute								
D5	FCPS	FM mode & SDS OFF 0 : CP 30 mA fixed 1 : CP selectable (SUB-ADD 00H D7)								
		PLL-reference frequency selector								
			RO	FM	AM					
D6	RO		0	25 kHz	10 kHz					
			1	50 kHz	9 kHz					
MSB : D7	AMHIS	AM-SD hysteresis control 1 : AM-SD hysteresis ON								

I²C-bus interface (continued)
6. Sub address byte and data byte format (Write mode) (continued)

Note) *1 : When SDS mode is ON and stop condition of I2C comes, IF count is carried out . 70 ms after the stop condition, a result is ready at read mode.

Technical Data (continued)

I²C-bus interface (continued)
Sub address byte and data byte format (Write mode) (continued)

Tuner-control (Group 2) SUB-ADD 02H (Write)								
Bit	Name	Function						
LSB : D0	N0	PLL-N divider						
D1	N1	N-divider						
D2	N2	$FM = N = 2^{13} + 2^{12} + 2^{12} + 2^{11} + 2$						
D3	N3	$ \begin{array}{c} FM: N = 2^{13} \times N13 + 2^{12} \times N12 + 2^{11} \times N11 + \cdots + 2^{6} \times N0 \\ AM: N = 2^{9} \times N13 + 2^{8} \times N12 + 2^{7} \times N11 + \cdots + 2^{0} \times N4 \\ \end{array} $						
D4	N4	(Not use N0 to N3 at AM mode.)						
D5	N5							
D6	N6							
MSB : D7	N7							

Tuner-control (Group 2) SUB-ADD 03H (Write)								
Bit	Name	Function						
LSB : D0	N8	PLL-N divider						
D1	N9	N-divider						
D2	N10							
D3	N11	$ FM : N = 2^{13} \times N13 + 2^{12} \times N12 + 2^{11} \times N11 + \dots + 2^{9} \times N0 AM : N = 2^{9} \times N13 + 2^{8} \times N12 + 2^{7} \times N11 + \dots + 2^{9} \times N4 $						
D4	N12	(Not use N0 to N3 at AM mode.)						
D5	N13							
D6								
MSB : D7	_							

I²C-bus interface (continued)
Sub address byte and data byte format (Write mode) (continued)

Bit	Name						Function	
		Ana	log / lo	gic sig	nal mor	itor		
			DS0	DS1	DS2	DS3		Monitor point
LSB : D0	DS0		0	0	0	0	Monitor OFF	
			1	0	0	0	Monitor of FM de	tector reference voltage
	DS1	_	0	1	0	0	Monitor of FM de	tector adjustment DAC output
			1	1	0	0	Monitor of FM se	paration adjustment DAC output
D1			0	0	1	0	Monitor of the hy indicator	steresis DC voltage of FM-SD
			1	0	1	0	Monitor of the hy indicator	steresis DC voltage of stereo
			0	1	1	0	Monitor of SD-O	N level adjustment DAC output
D2	DC2		1	1	1	0	FM S-Meter	
D2	052		0	0	0	1	Monitor of Pilot	canceller output
			1	0	0	1	Monitor of MPX-	VCO
			0	1	0	1	PS output	
			1	1	0	1	ANC output	
			0	0	1	1	RED output	
D3	DS3		1	0	1	1	F450	
			0	1	1	1	NIFC	
			1	1	1	1	Monitor of the hy indicator	steresis DC voltage of AM-SD
		Cha	rge pur	np con	trol			
D4	PHD0		PHD	0 F	HD1	Charg	je pump control	
			0		0	Normal	mode	
			1		0	Force u	р	
D5	PHD1		0		1	Force d	own	
			1		1	Hi-Z m	ode	
D6	VMOS3	1: 0	1: OSC buffer stop					
MSB : D7	LIMSTOP	0:1	FM IF a	mp. sto	op (Pin	10 Low)		

Technical Data (continued) I²C-bus interface (continued)

			•	,			
6.	Sub	address	byte a	nd data b	yte format	(Write mode)	(continued)

Tuner-control (Group 3) SUB-ADD 05H (Write)								
Bit	Name	Function						
LSB : D0	EMU	Adjustment mode 1 : ON						
D1	ZRW	Read / write mode 0 : Read 1 : Write						
D2	DE0							
D3	DE1							
D4	DE2	At adjustment mode : FM detector adjustment						
D5	DE3	At write mode : 1 : Writing bit						
D6	DE4							
MSB : D7	DE5							

Tuner-control (Group 3) SUB-ADD 06H (Write)					
Bit	Name	Function			
LSB : D0	SE0	At adjustment mode · MPX separation adjustment			
D1	SE1				
D2	SE2	At write mode : 1 : Writing bit			
D3					
D4					
D5		Set them to "0" all.			
D6	_				
MSB : D7	_				

Technical Data (continued)

I²C-bus interface (continued)
Sub address byte and data byte format (Write mode) (continued)

Tuner-control (Group 3) SUB-ADD 07H (Write)					
Bit Name Function					
LSB : D0	D070	1 : AM IF amp. stop			
D1	CIS	0 : FM IF counter band width = 40 kHz, 1 : FM IF counter band width = 10 kHz			
D2	_				
D3					
D4	_	Set them to "0" all			
D5	D5 — Set them to "0" all.				
D6					
MSB : D7					

- Technical Data (continued)
 I²C-bus interface (continued)
 7. Data byte format (Read mode)

Tuner-control (Group 4) SUB-ADD none (Read)					
Bit	Name	Function			
LSB : D0	IFC	IF counter output 0 : No signal AM IF C band width = 4 kHz, FM IFC band width = 40 kHz, or 10 kHz			
D1					
D2					
D3					
D4		D1 to D7 = 1			
D5					
D6					
MSB : D7					

Technical Data (continued)

• I²C-bus interface (continued)

8. Precaution in setup of I²C-bus data

- 1) Power on
 - a) All data must be set on IC when the power supply is tuned on. (SUB ADD : 00H to 07H)
 - b) IF limit amplifier must be ON at the time of the initial data transfer of I²C. (SUB ADD : 04H, D7 = "1")
 - c) The power supply transition time (V_{CC1, 2} = 0 \rightarrow 9 V) must be more than 10 ms.
 - d) Electric current flows in the power supply off condition when a power supply is connected to the TUNED terminal (Pin 21). Therefore, be careful in the case of the backup mode such as a microcomputer.

2) Pin 16

Don't use Pin 16 (ZAP). It must be open.

- 3) Monitor function
 - a) Pin 21 of this IC has a function to monitor internal circuit terminals of this IC. The monitor point of analog signal or digital signal is set by SUBADD : 04H, D0 to D3. The choice of monitor point of logic signal is SUBADD : 0AH. It is chosen by D0 to D2 of 0AH.
 - b) Don't choose more than one monitor point (analog, logic) at the same time.
 - c) It is prohibited choosing the monitor point when IF limit amplifier is compulsory off (SUBADD : 04H, D7 = "0"). Be sure to turn on IF limit amplifier when you use monitor function.
 - d) Monitor function is a function for the test purpose only in our company, and its function is not guaranteed. When it is needed to send data, all data must be "0". Don't use it with the actual tuner set.
- 4) Charge pump test function
 - a) SUBADD : 04H D4 to D5 are the bits for the function check of charge pump. For a normal use, they must be set to "0".
- 5) Handling unused bits

a) All unused bits must be set to "0". When it is necessary to input Subaddress data, all unused bits must be set to "0".

6) Set number of N divider

Don't establish N value about settlement of N divider in 271 or less.

7) The timing of IF counter

IF counter starts to count when it detects Stop condition of write mode at SDS mode (SUB ADD : 01H, D1 = "1"). The result of the IF count can get it when it begins to read it after the progress about more than 70 ms and it is made the mode and begins to read it.

To prevent IF counter's abnormal function, so that stop condition may not come between about 70 ms of the following. (see the figure below.) Even if this timing isn't kept, IC doesn't become uncontrollable. But the following condition are occurred by the transmitting data.

- a) When there are data which turn off SDS :
- Counter stops, and it is reset. The judgment result of IF counter isn't right. Ignore data and erase it. b) In the case of the dummy data:

Stop condition is ignored, and IF counter works as it is. (It isn't reset.) If an original access prohibition time passes, the proper result of IF counter is obtained.

• I/O block circuit diagrams and pin function descriptions

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
45	10.7 MHz	4.2 V $4.2 V$ $14.6k$ $20.4k$ $12k$ $6ND$ $12k$ $6ND$ $12k$	330 Ω (AC input)	FM 2nd IF amp. input
46	_	_	_	GND (IF)
47		47 1.05k 47 1.05k GND	1 kΩ	Output for FM FE block control
48	fIF 10.7 MHz	VCC 4k 600 mA GND 48 GND 12k GND	330 Ω	FM 1st IF amp. output
1	V37 (DC)	at AM 1k 1.05k 1.05k 150k 18.6k GND FM DET	AM : 20 kΩ FM : 151 kΩ	AM signal meter / FM-AFC

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
2	10.7 MHz	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	330 Ω	FM 1st IF amp. input
3	1.9 V	VCC \downarrow $100 \mu A$ 3 \downarrow $100 \mu A$ 1k $1k$ Jk Jk Jk Jk Jk Jk Jk J	4 kΩ	FM detector bypass 2 External capacitor = 0.1 μF
4	1.8 V	$30 \text{ mA} \downarrow \bigcirc 1.05 \text{k} \square 1.$	12 kΩ	FM detector bypass 1 External capacitor = 0.1 μF
5		VCC 200 5 6.8k GND 12k GND	High	FM LOSCBUF input
6	DC ≈ V _{CC1} – 1.4 V		68 kΩ	Level detector for MPX pilot canceller

• I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
7	DC	(7) (12k) (ND) (12k) (ND)		VCC for Logic
8	_	_	_	GND for Logic GND for charge pump
9	DC	Phase DET 9 GND GND	High	CPOUT Charge pump output
10	DC	(10 VCC2 GND 12k GND	_	VCC2 Charge pump-V _{CC}
11		VCC 11 GND GND 12k $400 \mu A$ $400 \mu A$ $400 \mu A$ $400 \mu A$ $400 \mu A$ $400 \mu A$ $400 \mu A$	120 Ω	Crystal oscillator
12		OPEN		N.C.(OPEN in IC)

• I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
13		153k 153k GND	154 kΩ	V _{DD} selector
14	JUU	(14)	High	Serial clock input (SCL)
15		(1)	High	Serial data input / output (SDA)
16	_	GND GND 12k		ZAP (Must be open.)
17 to 20	_	OPEN	_	N.C. (OPEN in IC)

• I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
21		Contraction of the second seco	1 kΩ	TUNED/Test SD-OUT FM/AM tuning indicator Test monitor output
22	DC bias = 3.5 V	7.35k T.05k C. GND GND C. 7.35k C. C. C. C. C. C. C. C. C. C. C. C. C. C	8.4 kΩ	L-ch. de-emphasis output (External capacitor $0.0056 \ \mu F \cong 50 \ \mu s$)
23	_	1k (3) 1k (3) (3) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1	1 kΩ	ST-OUT FM stereo indicator
24	DC bias = 3.5 V	7.35k 1.05k (24) GND GND	8.4 kΩ	R-ch. de-emphasis output (External capacitor $0.0056 \ \mu F \cong 50 \ \mu s$)
25	Composite signal	25 498k GND 3.5 V	500 kΩ	FM MPX input
26	_	AM-DET 205 FM-DET GND 12k GND	200 Ω	FM/AM detector output (Please leave it open when unused.)
27	AM-AF	(27) (27) (27) (1.05k) (27) (1.05k) (1.05k) (27) (1.05k)	11 kΩ	AM AF input

• I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
28	DC ≅ V _{CC1} – 1.4 V		46 kΩ	Phase detector for MPX-VCO
29	DC ≅ V _{CC1} – 1.4 V	214k 214k 1.05k 29 GND	214 kΩ	Stereo DET of MPX

• I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
30		OPEN		N.C. (OPEN in IC)
31	_	(31) + (12k)	_	VCC
32	_	_	_	GND
33	$ \int \frac{1}{f = 450 \text{ kHz}}^2 V $	$\begin{array}{c} 33 \\ \hline \\ GND \\ GND \\ \hline \\ GND \\ \hline \\ 12k \\ 2 \\ V \\ \hline \\ \end{bmatrix}$	3.3 kΩ	AM IF amp. input
34	DC	AM DET 500k 1.05k GND	51 kΩ / 501 kΩ	AM-AGC level detector
35	$f = f_{OSC} - f_{RF}$	35 GND GND GND GND GND GND GND GND GND GND	High	AM mixer output

• I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
36		2 V 1k 36 GND	1 kΩ	FM DET-NULL and MPX- VCO adjustment
37	522 kHz - 1 720 kHz	38 250 37 250 37 250 37 250 37 250 37 250 37 250 18 VCC 18 VCC 18 12 12 12 12 12 12 12 12 12 12	High	AM RF input
38		$\begin{array}{c} VCC \\ 1 \text{ mA} \\ GND \\ $	1 kΩ	AM RF reference
39		30 mA		AM L-OSC AM local oscillator load
40		5 V 22k 1.05k 40 GND	23 kΩ	FM signal meter adjustment
41 to 45	_	OPEN		N.C. (OPEN in IC)

- Technical Data (continued)
- $P_D T_a$ diagram

Usage Notes

- Special attention and precaution in using
 - 1. This IC is intended to be used for general electronic equipment [Home audio tuner].
 - Consult our sales staff in advance for information on the following applications:
 - Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this IC may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
 - (1) Space appliance (such as artificial satellite, and rocket)
 - (2) Traffic control equipment (such as for automobile, airplane, train, and ship)
 - (3) Medical equipment for life support
 - (4) Submarine transponder
 - (5) Control equipment for power plant
 - (6) Disaster prevention and security device
 - (7) Weapon
 - (8) Others : Applications of which reliability equivalent to (1) to (7) is required
 - 2. Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might smoke or ignite.
 - 3. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration.
 - 4. Perform a visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as a solderbridge between the pins of the semiconductor device. Also, perform a full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the LSI during transportation.
 - Take notice in the use of this product that it might break or occasionally smoke when an abnormal state occurs such as output pin-V_{CC} short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short).
 And, safety measures such as an installation of fuses are recommended because the extent of the above-mentioned damage and smoke emission will depend on the current capability of the power supply.
 - 6. When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- 7. When using the LSI for new models, verify the safety including the long-term reliability for each product.
- When the application system is designed by using this LSI, be sure to confirm notes in this book. Be sure to read the notes to descriptions and the usage notes in the book.

36

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805