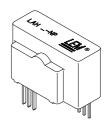


Current Transducer LAH 25-NP

For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Αt Primary nominal r.m.s. current 25 I_{PN} Primary current, measuring range 1) 0..55 Αt \dot{R}_{M} Measuring resistance @ $T_{\Lambda} = 70^{\circ}C$ $T_{\Delta} = 85^{\circ}C$ with ± 12 V 257 252 Ω @ I_{PN} [± At_{DC}] @ I_{PN} [At _{RMS}]2) 0 155 0 150 Ω @ I_{PN} [± At_{DC}] 67 371 70 366 Ω with ± 15 V @ I_{PN} [At $_{RMS}$]²⁾ @ I_{P} < I_{PN} ³⁾ 67 236 70 231 Ω


I _{SN}	Secondary nominal r.m.s. current	25	mΑ
K _N	Conversion ratio	1 - 2 - 3 : 100	0
V _C	Supply voltage (± 5 %)	± 12 15	V
I _C	Current consumption	10 (@ ± 15V) +	I _s mA
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	5	kV
V _b	R.m.s. rated voltage 4)	600	V

Α	Accuracy - Dynamic performance data					
X	Accuracy ⁵⁾ @ I _{PN} , T _A = 25°C	± 0.3	%			
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity	< 0.2	%			
I _O I _{OM} I _{OT}	Offset current @ \mathbf{I}_{A} = 25°C Residual current @ \mathbf{I}_{P} = 0, after an overload of 5 x \mathbf{I}_{PN} Thermal drift of \mathbf{I}_{O} 0°C + 70°C - 25°C + 85°C	Typ Max ± 0.15 ± 0.20 ± 0.25 ± 0.10 ± 0.60 ± 0.10 ± 0.70	mA mA			
t _{ra} t _r di/dt	Reaction time @ 10 % of I_{PN} Response time $^{6)}$ @ 90 % of I_{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 200 < 500 > 200 DC 200	ns ns A/µs kHz			

General data						
$T_{_{\rm A}}$	Ambient operating temperature		- 25 + 85	°C		
T _s	Ambient storage temperature		- 40 + 90	°C		
\mathbf{R}_{s}	Secondary coil resistance	@ $T_A = 70^{\circ}C$	99	Ω		
Ü		@ $T_A = 85^{\circ}C$	104	Ω		
m	Mass	•	20	g		
	Standards 7)		EN 50178			

Notes : 1) During 10 s, with $R_{\rm M} \le 109~\Omega$ ($V_{\rm C} = \pm~15~V$) - 2) 50 Hz Sinusoidal - 3) The measuring resistance $R_{\rm M~min}$ may be lower (see "LAH Technical Information" leaflet) - 4) Pollution class 2, cat. III - 5) Without $I_{\rm O}$ & $I_{\rm OM}$ - 6) With a di/dt of 100 A/ μ s - 7) A list of corresponding tests is available.

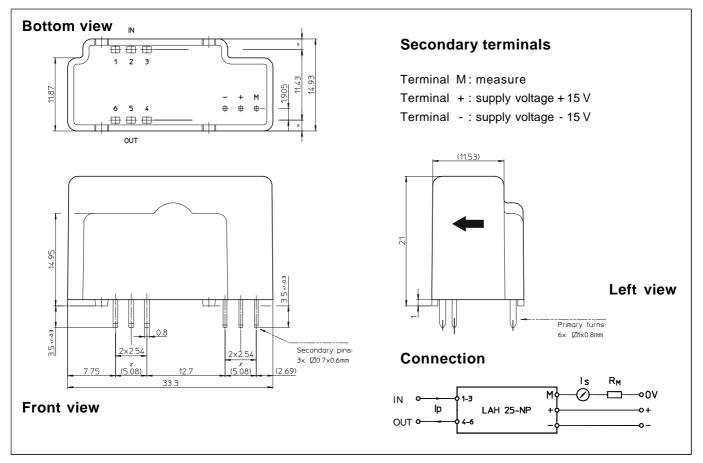
$I_{PN} = 8-12-25 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- · Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

010822/3

Dimensions LAH 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary t u r n s	Primary nominal I _{PN} [A]	current maximum I _P [A]	Nominal output current I_{SN} [mA]	Turns ratio K _N	Primary resistance \mathbf{R}_{P} [m Ω]	Primary insertion inductance L _P [µH]	Recommended PCB connections
1	25	55	25	1 : 1000	0.18	0.012	3 2 1 IN 0-0-0 0-0-0 OUT 4 5 6
2	12	27	24	2 : 1000	0.81	0.054	3 2 1 IN O-Q O O-O O OUT 4 5 6
3	8	18	24	3 : 1000	1.62	0.110	3 2 1 IN Q Q O O O OUT 4 5 6

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm
- 6 pins 1 x 0.8 mm
- 1.5 mm
- 3 pins 0.7 x 0.6 mm 1.2 mm

Remarks

- I_s is positive when I_p flows from terminals 1, 2, 3 (IN) to terminals 6, 5, 4 (OUT).
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.