Current Transducer LAH 25-NP For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). #### **Electrical data** Αt Primary nominal r.m.s. current 25 I_{PN} Primary current, measuring range 1) 0..55 Αt \dot{R}_{M} Measuring resistance @ $T_{\Lambda} = 70^{\circ}C$ $T_{\Delta} = 85^{\circ}C$ with ± 12 V 257 252 Ω @ I_{PN} [± At_{DC}] @ I_{PN} [At _{RMS}]2) 0 155 0 150 Ω @ I_{PN} [± At_{DC}] 67 371 70 366 Ω with ± 15 V @ I_{PN} [At $_{RMS}$]²⁾ @ I_{P} < I_{PN} ³⁾ 67 236 70 231 Ω | I _{SN} | Secondary nominal r.m.s. current | 25 | mΑ | |-----------------------|--|-----------------|-------------------| | K _N | Conversion ratio | 1 - 2 - 3 : 100 | 0 | | V _C | Supply voltage (± 5 %) | ± 12 15 | V | | I _C | Current consumption | 10 (@ ± 15V) + | I _s mA | | V _d | R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn | 5 | kV | | V _b | R.m.s. rated voltage 4) | 600 | V | | | | | | | Α | Accuracy - Dynamic performance data | | | | | | |--|--|--|-------------------------|--|--|--| | X | Accuracy ⁵⁾ @ I _{PN} , T _A = 25°C | ± 0.3 | % | | | | | $\mathbf{e}_{\scriptscriptstyle L}$ | Linearity | < 0.2 | % | | | | | I _O I _{OM} I _{OT} | Offset current @ \mathbf{I}_{A} = 25°C
Residual current @ \mathbf{I}_{P} = 0, after an overload of 5 x \mathbf{I}_{PN}
Thermal drift of \mathbf{I}_{O} 0°C + 70°C
- 25°C + 85°C | Typ Max
± 0.15
± 0.20 ± 0.25
± 0.10 ± 0.60
± 0.10 ± 0.70 | mA
mA | | | | | t _{ra} t _r di/dt | Reaction time @ 10 % of I_{PN}
Response time $^{6)}$ @ 90 % of I_{PN}
di/dt accurately followed
Frequency bandwidth (- 1 dB) | < 200
< 500
> 200
DC 200 | ns
ns
A/µs
kHz | | | | | General data | | | | | | | |---------------------------|-------------------------------|-----------------------|-----------|----|--|--| | $T_{_{\rm A}}$ | Ambient operating temperature | | - 25 + 85 | °C | | | | T _s | Ambient storage temperature | | - 40 + 90 | °C | | | | \mathbf{R}_{s} | Secondary coil resistance | @ $T_A = 70^{\circ}C$ | 99 | Ω | | | | Ü | | @ $T_A = 85^{\circ}C$ | 104 | Ω | | | | m | Mass | • | 20 | g | | | | | Standards 7) | | EN 50178 | | | | Notes : 1) During 10 s, with $R_{\rm M} \le 109~\Omega$ ($V_{\rm C} = \pm~15~V$) - 2) 50 Hz Sinusoidal - 3) The measuring resistance $R_{\rm M~min}$ may be lower (see "LAH Technical Information" leaflet) - 4) Pollution class 2, cat. III - 5) Without $I_{\rm O}$ & $I_{\rm OM}$ - 6) With a di/dt of 100 A/ μ s - 7) A list of corresponding tests is available. # $I_{PN} = 8-12-25 A$ #### **Features** - Closed loop (compensated) multirange current transducer using the Hall effect - · Printed circuit board mounting - Insulated plastic case recognized according to UL 94-V0. #### **Advantages** - Excellent accuracy - Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - · Current overload capability. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - · Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 010822/3 ### **Dimensions LAH 25-NP** (in mm. 1 mm = 0.0394 inch) | Number
of primary
t u r n s | Primary
nominal
I _{PN} [A] | current
maximum
I _P [A] | Nominal output current I_{SN} [mA] | Turns
ratio
K _N | Primary resistance \mathbf{R}_{P} [m Ω] | Primary insertion inductance L _P [µH] | Recommended
PCB connections | |-----------------------------------|---|---|--------------------------------------|---|--|---|---| | 1 | 25 | 55 | 25 | 1 : 1000 | 0.18 | 0.012 | 3 2 1 IN
0-0-0
0-0-0
OUT 4 5 6 | | 2 | 12 | 27 | 24 | 2 : 1000 | 0.81 | 0.054 | 3 2 1 IN
O-Q O
O-O O
OUT 4 5 6 | | 3 | 8 | 18 | 24 | 3 : 1000 | 1.62 | 0.110 | 3 2 1 IN
Q Q O
O O
OUT 4 5 6 | #### **Mechanical characteristics** - General tolerance - Fastening & connection of primary Recommended PCB hole - Fastening & connection of secondary Recommended PCB hole - ± 0.2 mm - 6 pins 1 x 0.8 mm - 1.5 mm - 3 pins 0.7 x 0.6 mm 1.2 mm #### Remarks - I_s is positive when I_p flows from terminals 1, 2, 3 (IN) to terminals 6, 5, 4 (OUT). - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.