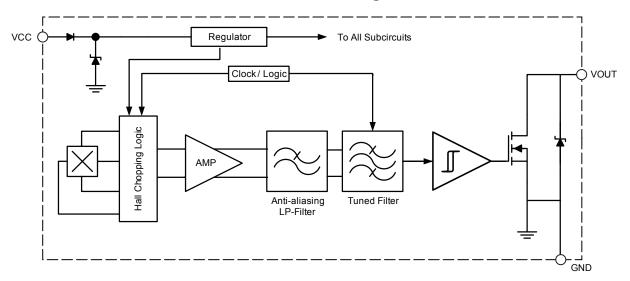


Features and Benefits

- Symmetrical switchpoints
- Superior temperature stability
- Operation from unregulated supply
- Open-drain 25 mA output
- Reverse Battery protection
- Activate with small, commercially available permanent magnets
- Solid-state reliability
- Small size
- Resistant to physical stress
- Enhanced ESD structures result in 8 kV HBM ESD performance without external protection components
- Internal protection circuits enable 40 V load dump compliance without external protection components

Packages: 3-pin SOT89 (suffix LT) and 3-pin SIP (suffix UA)


Description

These Hall-effect latches are extremely temperature-stable and stress resistant sensor ICs especially suited for operation over extended temperature ranges to 150°C. Superior high-temperature performance is made possible through a novel Schmitt trigger circuit that maintains operate and release point symmetry by compensating for temperature changes in the Hall element. Additionally, internal compensation provides magnetic switchpoints that become more sensitive with temperature, hence offsetting the usual degradation of the magnetic field with temperature. The symmetry capability makes these devices ideal for use in pulse-counting applications where duty cycle is an important parameter. The three basic devices (A1225, A1227, and A1229) are identical except for magnetic switchpoints.

Each device includes on a single silicon chip a voltage regulator, Hall-voltage generator, temperature compensation circuit, signal amplifier, Schmitt trigger, and a buffered open-drain output to sink up to 25 mA. The on-board regulator permits operation with supply voltages of 3.8 to 24 V.

The first character of the part number suffix determines the device operating temperature range. Suffix L is for -40° C to 150°C. Two package styles provide a magnetically optimized package for most applications. Suffix LT is a miniature SOT89/TO-243AA transistor package for surface-mount applications, suffix UA is a three-lead ultra-mini-SIP. Both packages are lead (Pb) free with 100% matte tin leadframe plating.

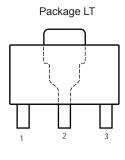
Functional Block Diagram

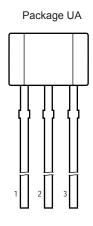
A1225, A1227 and A1229

Hall Effect Latch for High Temperature Operation

Selection Guide

Part Number	Packing*	Package	Ambient Temperature, T _A	B _{RP} (min) (G)	B _{OP} (max) (G)
A1225LLTTR-T	7-in. reel, 1000 pieces/reel	3-pin SOT89 surface mount	–40°C to 150°C	-300	300
A1225LUA-T	Bulk, 500 pieces/bag	3-pin SIP through hole	-40 C to 150 C		300
A1227LLTTR-T	7-in. reel, 1000 pieces/reel	3-pin SOT89 surface mount	-40°C to 150°C	-175	175
A1227LUA-T	Bulk, 500 pieces/bag	3-pin SIP through hole	-40 C to 150 C	-175	175
A1229LLTTR-T	7-in. reel, 1000 pieces/reel	3-pin SOT89 surface mount	-40°C to 150°C	-200	200
A1229LUA-T	Bulk, 500 pieces/bag	3-pin SIP through hole	-40 C to 150 C	-200	200


^{*}Contact Allegro® for additional packaging options.



Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Unit
Forward Supply Voltage	V _{CC}		30	V
Reverse Supply Voltage	V _{RCC}		-30	V
Output Off Voltage	V _{OUT}		30	V
Reverse Output Voltage	V _{ROUT}		-0.5	V
Continuous Output Current	I _{OUT(SINK)}		25	mA
Operating Ambient Temperature	T _A	Range L	-40 to 150	°C
Maximum Junction Temperature	T _J (max)		165	°C
Storage Temperature	T _{stg}		-65 to 170	°C

Pin-out Diagrams

Terminal List Table

Number	Name	Function
1	VCC	Input power supply
2	GND	Ground
3	VOUT	Output signal

A1225, A1227 and A1229

Hall Effect Latch for High Temperature Operation

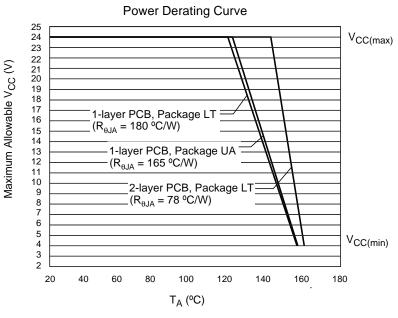
ELECTRICAL CHARACTERISTICS Valid at $T_A = -40^{\circ}\text{C}$ to 150°C, $C_{BYPASS} = 0.1 \,\mu\text{F}$, $V_{CC} = 12 \,\text{V}$; unless otherwise noted

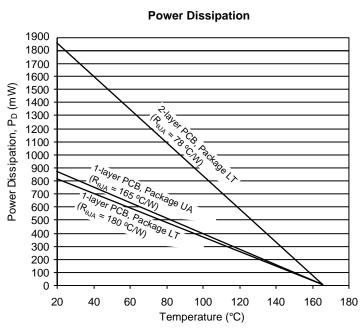
Characteristics	Symbol		Test Conditions	Min.	Typ.1	Max.	Unit ²
Electrical Characteristics				•			
Supply Voltage	V _{CC}	Operating; T _J ≤ 165°C		3.8		24	V
Owner to Owner to		B < B _{RP} (Output off)		_	_	6	mA
Supply Current	Icc	B > B _{OP} (Output on)		_	_	6	mA
Supply Zener Voltage	V _{Z(sup)}	I _{CC} = 9	mA, T _A = 25°C	28	_	_	V
Reverse Battery Current	I _{Z(sup)}	V _{RCC} =	–28 V, T _A = 25°C	- 5	_	_	mA
Power-On Time ³	t _{PO}			_	_	12	μs
Power-On State	POS	B < B _{OF}	•	_	HIGH	_	-
Chopping Frequency	f _{chop}			_	400	_	kHz
Output Stage Characteristics							
Output Saturation Voltage	V _{OUT(sat)}	I _{OUT} = 2	20 mA	_	175	400	mV
Output Leakage Current	I _{OFF}	V _{OUT} =	24 V, B < B _{RP}	_	< 1	10	μΑ
Output Rise Time ^{3,4}	t _r	R _L = 820 Ω, C _L = 20 pF		_	200	2000	ns
Output Fall Time ^{3,4}	t _f	R _L = 820 Ω, C _L = 20 pF		_	200	2000	ns
Output Zener Voltage	V _{Z(out)}	I _{OUT} = 3 mA, T _A = 25°C		30	_	_	V
Magnetic Characteristics							
		A1225	T _A = 25°C	170	_	270	G
		A1225	Over operating temperature range	140	_	300	G
Operate Reint	D	A1227	T _A = 25°C	50	_	150	G
Operate Point	B _{OP}		Over operating temperature range	50	_	175	G
		A1229	T _A = 25°C	100	_	180	G
			Over operating temperature range	80	_	200	G
		A1225	T _A = 25°C	-270	_	-170	G
			Over operating temperature range	-300	_	-140	G
Release Point	Ь	A1227	T _A = 25°C	-150	_	-50	G
Release Foliti	B _{RP}		Over operating temperature range	-175	_	-50	G
		A1229	T _A = 25°C	-180	_	-100	G
			Over operating temperature range	-200	_	-80	G
		A1225 -	T _A = 25°C	340	_	540	G
			Over operating temperature range	280	_	600	G
Hystorogia (P	l p	A1227	T _A = 25°C	100		300	G
Hysteresis (B _{OP} – B _{RP})	B _{HYS}	AIZZI	Over operating temperature range	100	_	350	G
		A4000	T _A = 25°C	200	-	360	G
		A1229	Over operating temperature range	160	_	400	G

 $^{^{1}}$ Typical data are at T_{A} = 25 $^{\circ}$ C and V_{CC} = 12 V, and are for design estimations only.

3

²1 G (gauss) = 0.1 mT (millitesla).

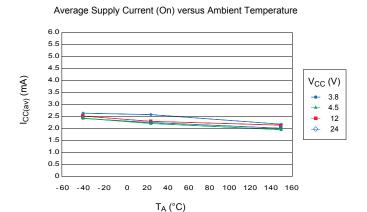

³Minimum and maximum specifications verified by bench characterization and not guaranteed by Allegro final test.


 $^{{}^{4}}C_{L}$ = oscilloscope probe capacitance.

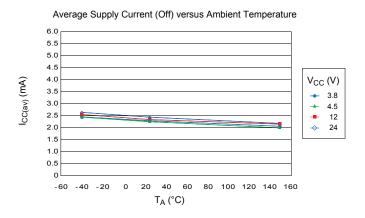
THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information

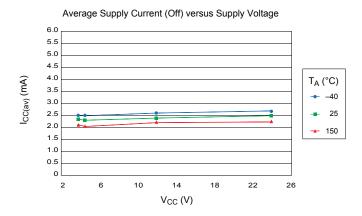
Characteristic	Symbol	Test Conditions*	Value	Units
	$R_{ heta JA}$	Package LT, 1-layer PCB with copper limited to solder pads		°C/W
Package Thermal Resistance		Package LT, 2-layer PCB with 0.94 in ² copper each side		°C/W
		Package UA, 1-layer PCB with copper limited to solder pads	165	°C/W

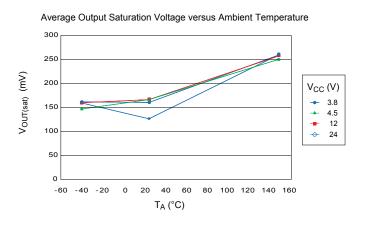
^{*}Additional thermal information available on Allegro website.

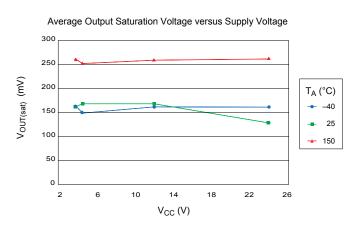


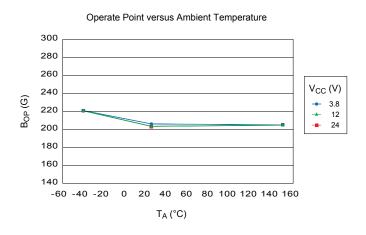


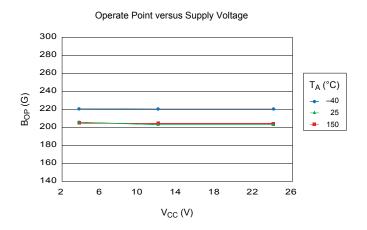


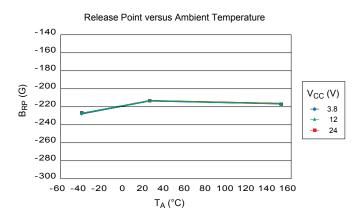

Characteristic Performance

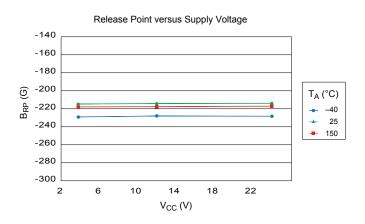

A1225, A1227, and A1229 Electrical Characteristics

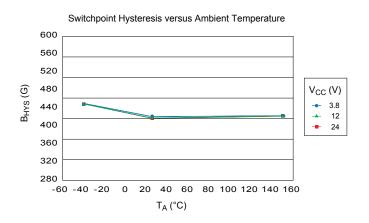


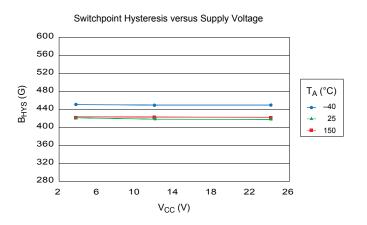


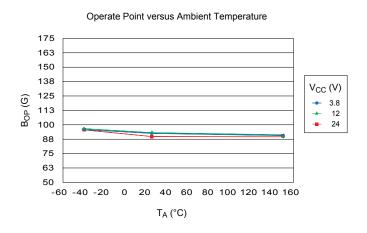


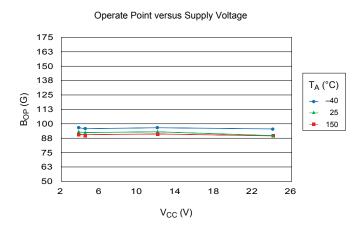


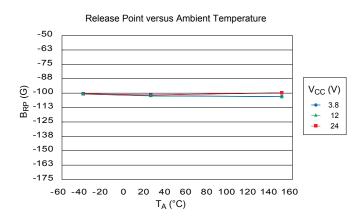


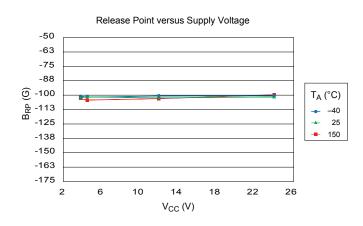

A1225 Magnetic Characteristics

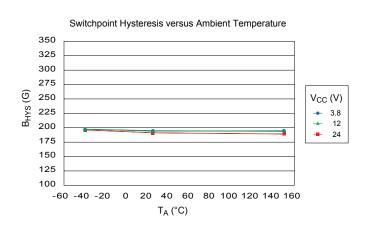


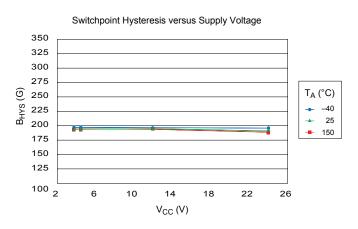


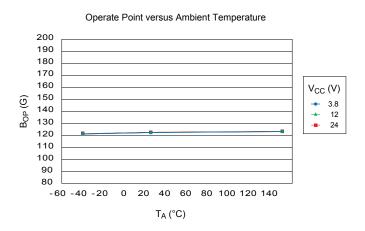


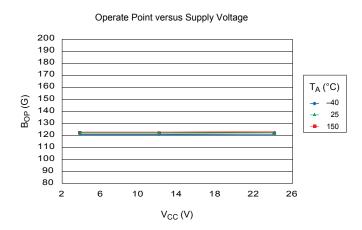


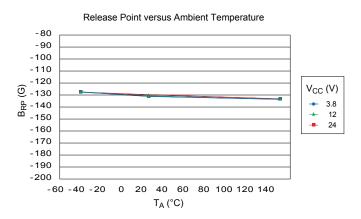


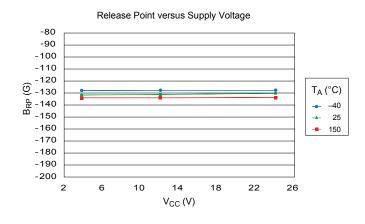

A1227 Magnetic Characteristics

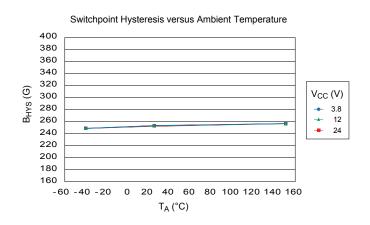


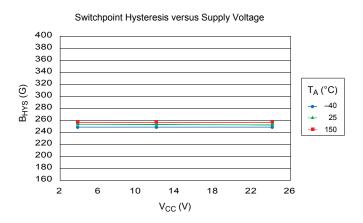









A1229 Magnetic Characteristics



Functional Description and Application Information

Switching Behavior

The output of the A1225, A1227, and A1229 devices switches low (turns on) when a magnetic field perpendicular to the Hall element exceeds the operate point threshold, B_{OP} (see figure 1). After turn-on, the output is capable of sinking 25 mA and the output voltage is $V_{OUT(sat)}$. Notice that the device latches; that is, a south pole of sufficient strength towards the branded surface of the device turns the device on, and the device remains on with removal of the south pole.

When the magnetic field is reduced below the release point, $B_{RP},$ the device output goes high (turns off). The difference between the magnetic operate point and release point is the hysteresis, $B_{HYS},$ of the device. This built-in hysteresis allows clean switching of the output, even in the presence of external mechanical vibration and electrical noise.

When the device is powered-on in the hysteresis range, less than B_{OP} and higher than B_{RP} , the device output goes high. The correct output state is attained after the first excursion beyond B_{OP} or B_{RP} .

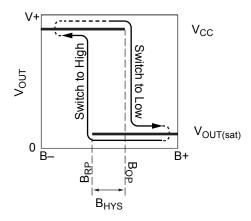


Figure 1. Output switching characteristics

Application Information

The simplest form of magnet that will operate these devices is a ring magnet, as shown in figure 2. Other methods of operation are possible.

In three-wire applications the device output is connected through a pull-up resistor to the supply pin or separate battery voltage (figure 3). Switching of the output signal indicates sufficient change of the magnetic field.

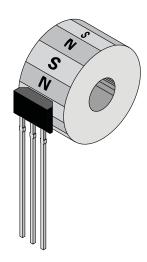


Figure 2. Typical magnetic target configuration using a ring magnet

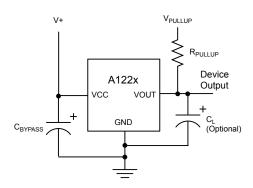


Figure 3. Typical 3-wire application circuit

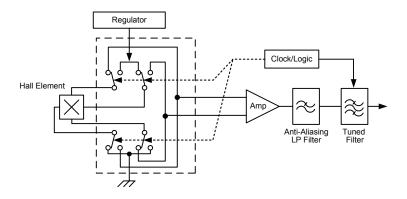
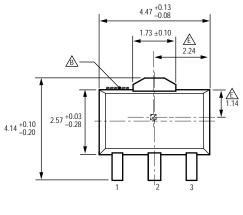
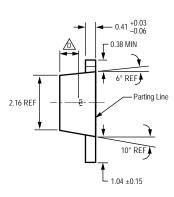
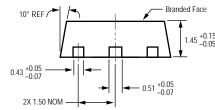
A1225, A1227 and A1229

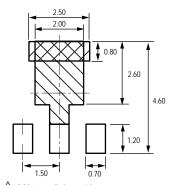
Hall Effect Latch for High Temperature Operation

Chopper Stabilization Technique

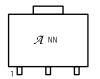
When using Hall-effect technology, a limiting factor for switchpoint accuracy is the small signal voltage developed across the Hall element. This voltage is disproportionally small relative to the offset that can be produced at the output of the Hall sensor IC. This makes it difficult to process the signal while maintaining an accurate, reliable output over the specified operating temperature and voltage ranges. Chopper stabilization is a unique approach used to minimize Hall offset on the chip. Allegro employs a patented technique to remove key sources of the output drift induced by thermal and mechanical stresses. This offset reduction technique is based on a signal modulation-demodulation process. The undesired offset signal is separated from the magnetic field-induced signal in the frequency domain, through modulation. The subsequent demodulation acts as a modulation process for the offset, causing the magnetic field-induced signal to recover its original spectrum at base band, while the DC offset

becomes a high-frequency signal. The magnetic-sourced signal then can pass through a low-pass filter, while the modulated DC offset is suppressed. In addition to the removal of the thermal and stress related offset, this novel technique also reduces the amount of thermal noise in the Hall sensor IC while completely removing the modulated residue resulting from the chopper operation. The chopper stabilization technique uses a high-frequency sampling clock. For the demodulation process, a sample-and-hold technique is used. This high-frequency operation allows a greater sampling rate, which results in higher accuracy and faster signalprocessing capability. This approach desensitizes the chip to the effects of thermal and mechanical stresses, and produces devices that have extremely stable quiescent Hall output voltages and precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process, which allows the use of low-offset, low-noise amplifiers in combination with high-density logic integration and sample-and-hold circuits.


Figure 4. Chopper stabilization technique

Package LT 3-Pin SOT-89



PCB Layout Reference View Basic pads for low-stress, not self-aligning Additional pad for low-stress, self-aligning Additional area for IPC reference layout

A Standard Branding Reference View

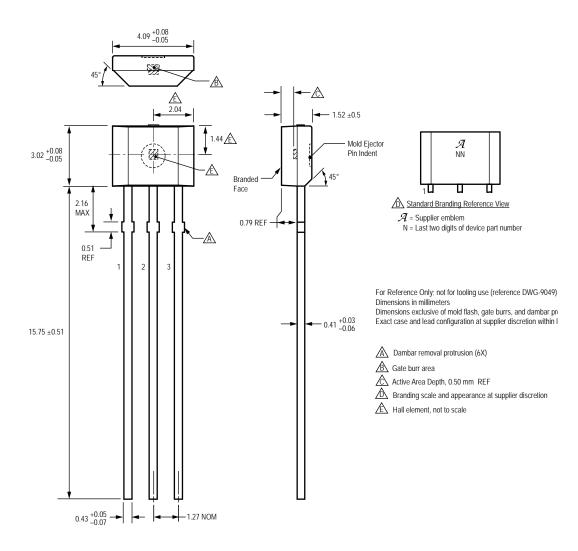
 \mathcal{A} = Supplier emblem N = Last two digits of device part number

 $\label{thm:local_problem} \mbox{Updated package drawing only. Allegro package assembly tooling has not changed.}$ For Reference Only; not for tooling use (reference DWG-9064) Dimensions in millimeters

Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

A Branding scale and appearance at supplier discretion

A Gate and tie bar burr area


Reference land pattern layout; All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout

Active Area Depth, 0.77 mm

All element; not to scale

11

Package UA 3-Pin SIP

 $Copyright @2009-2010, Allegro\ Micro Systems, Inc.$

The products described herein are manufactured under one or more of the following U.S. patents: 5,619,137; 5,621,319; 7,425,821 and other patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website:

www.allegromicro.com

