SPICE Device Model Si1900DL Vishay Siliconix ## **Dual N-Channel 30-V (D-S) MOSFET** #### **CHARACTERISTICS** - N-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - · Apply for both Linear and Switching Application - Accurate over the –55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics #### **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to $125^{\circ}\mathrm{C}$ temperature ranges under the pulsed 0 to $-5\mathrm{V}$ gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. ### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. Document Number: 71496 www.vishay.com 25-Apr-04 1 # **SPICE Device Model Si1900DL** # Vishay Siliconix | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | |---|---------------------|--|---------|------| | Parameter | Symbol | Test Conditions | Typical | Unit | | Static | | | | | | Gate Threshold Voltage | $V_{GS(th)}$ | $V_{DS} = V_{GS}, I_D = 250 \mu A$ | 2 | V | | On-State Drain Current ^a | I _{D(on)} | $V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V | 11 | Α | | Drain-Source On-State Resistance ^a | r _{DS(on)} | $V_{GS} = 10 \text{ V}, I_D = 0.59 \text{ A}$ | 0.41 | Ω | | | | $V_{GS} = 4.5V$, $I_D = 0.2 A$ | 0.57 | | | Forward Transconductance ^a | g _{fs} | $V_{DS} = 10 \text{ V}, I_{D} = 0.59 \text{ A}$ | 1 | S | | Diode Forward Voltage ^a | V _{SD} | $I_S = 0.23 \text{ A}, V_{GS} = 0 \text{ V}$ | 0.67 | V | | Dynamic ^b | | | | | | Total Gate Charge | Q_g | V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 0.59 A | 1 | nC | | Gate-Source Charge | Q_{gs} | | 13 | | | Gate-Drain Charge | Q_{gd} | | 0.08 | | | Turn-On Delay Time | $t_{d(on)}$ | V_{DD} = 15 V, R _L = 30 Ω I _D \cong 0.5 A, V _{GEN} = 10 V, R _G = 6 Ω | 6 | ns | | Rise Time | t _r | | 8 | | | Turn-Off Delay Time | $t_{d(off)}$ | | 11 | | | Fall Time | t_f | | 12 | | | Source-Drain Reverse Recovery Time | t _{rr} | $I_F = 0.23 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ | 15 | | ### Notes a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ www.vishay.com Document Number: 71496 b. Guaranteed by design, not subject to production testing. ## **SPICE Device Model Si1900DL** Vishay Siliconix ### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) Note: Dots and squares represent measured data. Document Number: 71496 www.vishay.com 25-Apr-04