

### SPICE Device Model Si1900DL Vishay Siliconix

## **Dual N-Channel 30-V (D-S) MOSFET**

#### **CHARACTERISTICS**

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to  $125^{\circ}\mathrm{C}$  temperature ranges under the pulsed 0 to  $-5\mathrm{V}$  gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\rm gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

### SUBCIRCUIT MODEL SCHEMATIC





This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71496 www.vishay.com 25-Apr-04 1

# **SPICE Device Model Si1900DL**

# Vishay Siliconix



| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                                                                                  |         |      |
|---------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|---------|------|
| Parameter                                                     | Symbol              | Test Conditions                                                                                                                  | Typical | Unit |
| Static                                                        |                     |                                                                                                                                  |         |      |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                                                                               | 2       | V    |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>  | $V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V                                                                                          | 11      | Α    |
| Drain-Source On-State Resistance <sup>a</sup>                 | r <sub>DS(on)</sub> | $V_{GS} = 10 \text{ V}, I_D = 0.59 \text{ A}$                                                                                    | 0.41    | Ω    |
|                                                               |                     | $V_{GS} = 4.5V$ , $I_D = 0.2 A$                                                                                                  | 0.57    |      |
| Forward Transconductance <sup>a</sup>                         | g <sub>fs</sub>     | $V_{DS} = 10 \text{ V}, I_{D} = 0.59 \text{ A}$                                                                                  | 1       | S    |
| Diode Forward Voltage <sup>a</sup>                            | V <sub>SD</sub>     | $I_S = 0.23 \text{ A}, V_{GS} = 0 \text{ V}$                                                                                     | 0.67    | V    |
| Dynamic <sup>b</sup>                                          |                     |                                                                                                                                  |         |      |
| Total Gate Charge                                             | $Q_g$               | $V_{DS}$ = 15 V, $V_{GS}$ = 10 V, $I_{D}$ = 0.59 A                                                                               | 1       | nC   |
| Gate-Source Charge                                            | $Q_{gs}$            |                                                                                                                                  | 13      |      |
| Gate-Drain Charge                                             | $Q_{gd}$            |                                                                                                                                  | 0.08    |      |
| Turn-On Delay Time                                            | $t_{d(on)}$         | $V_{DD}$ = 15 V, R <sub>L</sub> = 30 $\Omega$ I <sub>D</sub> $\cong$ 0.5 A, V <sub>GEN</sub> = 10 V, R <sub>G</sub> = 6 $\Omega$ | 6       | ns   |
| Rise Time                                                     | t <sub>r</sub>      |                                                                                                                                  | 8       |      |
| Turn-Off Delay Time                                           | $t_{d(off)}$        |                                                                                                                                  | 11      |      |
| Fall Time                                                     | $t_f$               |                                                                                                                                  | 12      |      |
| Source-Drain Reverse Recovery Time                            | t <sub>rr</sub>     | $I_F = 0.23 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$                                                                | 15      |      |

### Notes

a. Pulse test; pulse width  $\leq 300~\mu s,$  duty cycle  $\leq 2\%.$ 

www.vishay.com Document Number: 71496

b. Guaranteed by design, not subject to production testing.



## **SPICE Device Model Si1900DL** Vishay Siliconix

### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)













Note: Dots and squares represent measured data.

Document Number: 71496 www.vishay.com 25-Apr-04