

Vishay Semiconductors

Single Phase Fast Recovery Bridge (Power Modules), 60 A

SOT-227

PRODUCT SUMMARY				
I _{T(AV)}	60 A			
Туре	Modules - Bridge, Fast			

FEATURES

- Fast recovery time characteristic
- Electrically isolated base plate
- Simplified mechanical designs, rapid assembly
- UL pending
- Excellent power/volume ratio
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified for industrial and consumer level

DESCRIPTION

The semiconductor in the SOT-227 package is isolated from the copper base plate, allowing for common heatsinks and compact assemblies to be built.

MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	VALUES	UNITS	
		60	А	
10	T _C	59	°C	
I _{FSM}	50 Hz	300	٨	
	60 Hz	310	~	
l ² t	50 Hz	442	- A ² s	
	60 Hz	402		
V _{RRM}		600	V	
TJ		- 55 to 150	°C	

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J MAXIMUM		
SA60BA60	60	600	700	5		

COMPLIANT

SA60BA60

Vishay Semiconductors Single Phase Fast Recovery Bridge (Power Modules), 60 A

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum DC output current	L.	Resistive or ir	nductive load		60	А
at case temperature	10				59	°C
		t = 10 ms	No voltage	Initial T _J = T _J maximum	300	A
Maximum peak, one-cycle		t = 8.3 ms	reapplied		310	
non-repetitive forward current	IFSM	t = 10 ms	100 % V _{RRM}		250	
		t = 8.3 ms	reapplied		260	
Maximum I ² t for fusing	l ² t	t = 10 ms	No voltage reapplied		442	A ² s
		t = 8.3 ms			402	
		t = 10 ms	100 % V _{RRM}		313	
		t = 8.3 ms	reapplied		284	
Maximum I ² \sqrt{t} for fusing	l²√t	l^2t for time t_x = $l_2 \sqrt{t} \; x \; \sqrt{t_x}; 0.1 \leq t_x \leq 10$ ms, V_{RRM} = 0 V		4.4	kA²√s	
Value of threshold voltage	V _{F(TO)}	T _J maximum		0.914	V	
Forward slope resistance	r _t			10.5	mΩ	
Maximum forward voltage drop	V _{FM}	T _J = 25 °C, I _F	$T_{\rm J} = 25~{\rm ^{\circ}C}, \ I_{\rm FM} = 30~A_{\rm pk}$ $T_{\rm J} = T_{\rm J}$ maximum, $I_{\rm FM} = 30~A_{\rm pk}$ $t_{\rm p} = 400~\mu {\rm s}$		1.33	
		$T_J = T_J maxin$			1.23	V
RMS isolation voltage base plate	V _{INS}	f = 50 Hz, t = 1 s		3000		

RECOVERY CHARACTERISTICS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Reverse recovery time t _{rr}		$T_J = 25 \ ^{\circ}C, I_F = 20 \ A, V_R = 30 \ V,$ $dI_F/dt = 100 \ A/\mu s$	160		· •	
	۲rr	T_J = 125 °C, I _F = 20 A, V _R = 30 V, dI _F /dt = 100 A/µs	250	115		
Reverse recovery current	I _{rr}	T_J = 25 °C, I _F = 20 A, V _R = 30 V, dI _F /dt = 100 A/µs	10	A		
		T_J = 125 °C, I _F = 20 A, V _R = 30 V, dI _F /dt = 100 A/µs	15		$\frac{dI_{R}}{dt}$	
Reverse recovery charge	Q _{rr}	$T_J = 25 \ ^{\circ}C, I_F = 20 \ A, V_R = 30 \ V,$ $dI_F/dt = 100 \ A/\mu s$	1.20			
		T_J = 125 °C, I _F = 20 A, V _R = 30 V, dI _F /dt = 100 A/µs	2.90	nc		
Snap factor, typical	S	T _J = 25 °C	0.6	-		

THERMAL AND MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Junction and storage temperature range	T _J , T _{Stg}		- 55 to 150	°C
Maximum thermal resistance junction to case per bridge	R _{thJC}		0.30	°C 111
Typical thermal resistance, case to heatsink per module	R _{thCS}	Mounting surface, smooth, flat and greased	0.05	0/10
Approximate weight			30	g
Mounting torque ± 10 %		Bridge to heatsink	1.3	Nm
Case style			SOT-22	27

www.vishay.com 2

For technical questions within your region, please contact one of the following: indmodules@vishay.com

Document Number: 93050 Revision: 10-May-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

SA60BA60

Single Phase Fast Recovery Bridge Vishay Semiconductors (Power Modules), 60 A

Fig. 1 - Typical Forward Voltage Drop Characteristics

Fig. 3 - Forward Power Loss Characteristics

Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

SA60BA60

Vishay Semiconductors Single Phase Fast Recovery Bridge (Power Modules), 60 A

Fig. 5 - Recovery Time Characteristics, $T_J = 25 \ ^{\circ}C$

Fig. 8 - Recovery Charge Characteristics, $T_J = 150 \ ^\circ C$

For technical questions within your region, please contact one of the following: indmodules@vishay.com

Document Number: 93050 Revision: 10-May-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Single Phase Fast Recovery Bridge Vishay Semiconductors (Power Modules), 60 A

Fig. 11 - Reverse Recovery Parameter Test Circuit

 $Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$

(2) I_{RRM} - peak reverse recovery current

(3) t_{rr} - reverse recovery time measured from zero crossing point of negative going $\rm I_F$ to point where a line passing through 0.75 $\rm I_{RRM}$ and 0.50 $\rm I_{RRM}$ extrapolated to zero current.

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 12 - Reverse Recovery Waveform and Definitions

Vishay Semiconductors Single Phase Fast Recovery Bridge (Power Modules), 60 A

ORDERING INFORMATION TABLE

CIRCUIT CONFIGURATION					
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Single phase bridge	В				

LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95036		

Outline Dimensions

Vishay Semiconductors

SOT-227

DIMENSIONS in millimeters (inches)

Notes

- Dimensioning and tolerancing per ANSI Y14.5M-1982
- Controlling dimension: millimeter

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.