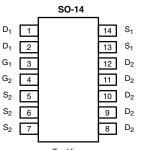


RoHS

COMPLIANT

HALOGEN

FREE

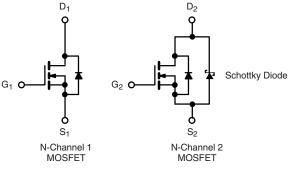

Vishay Siliconix

Dual N-Channel 20 V (D-S) MOSFET with Schottky Diode

PRODUCT SUMMARY							
	V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A) ^a	Q _g (Typ.)			
Channel-1	20	0.0085 at V _{GS} = 10 V	14.8	8.1			
		0.0115 at V _{GS} = 4.5 V	12.8	0.1			
Channel-2	20	0.0070 at V _{GS} = 10 V	22	8.4			
		0.0095 at V _{GS} = 4.5 V	18.9	0.4			

SCHOTTKY PRODUCT SUMMARY

V _{DS} (V)	V _{SD} (V) Diode Forward Voltage	I _F (A)
20	0.55 V at 2.5 A	2


Top View

FEATURES

- Halogen-free According to IEC 61249-2-21 ٠ Definition
- TrenchFET[®] Power MOSFET
- 100 % Rg Tested
- 100 % UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- DC/DC Converters, Synchronous Buck Converters
 - Game Stations -
 - Notebook PC Logic

Ordering Information: Si4340DDY-T1-GE3 (Lead (Pb)-free and Halogen-free)

Parameter	Symbol	Channel-1	nel-1 Channel-2			
Drain-Source Voltage	V _{DS}	2	V			
Gate-Source Voltage	V _{GS}	±	v			
	T _C = 25 °C		14.8	22		
Continuous Drain Current ($T_1 = 150 \ ^{\circ}C$)	T _C = 70 °C	L	11.8	17.6	•	
Continuous Drain Current (1) = 150°C)	T _A = 25 °C	- I _D	12.1 ^{b, c}	16.3 ^{b, c}		
	T _A = 70 °C		9.7 ^{b, c}	13 ^{b, c}		
Pulsed Drain Current (t = 300 μs)		I _{DM}	50	60	A	
Courses Ducia Coursent Diada Coursent	T _C = 25 °C	L.	2.5	4.5		
Source-Drain Current Diode Current	T _A = 25 °C	I _S	1.7 ^{b, c}	2.5 ^{b, c}		
Single Pulse Avalanche Current		I _{AS}	15			
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	11.25		mJ	
	T _C = 25 °C		3	5.4		
Movimum Dougs Discipation	T _C = 70 °C	D_	1.9	3.5	w	
Maximum Power Dissipation	T _A = 25 °C	PD	2 ^{b, c}	3 ^{b, c}	vv	
	T _A = 70 °C		1.3 ^{b, c}	1.9 ^{b, c}		
Operating Junction and Storage Temperature R	T _J , T _{stg}	- 55 to 150		°C		

THERMAL RESISTANCE RATINGS								
			Channel-1		Channel-2			
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit	
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	53	62.5	35	42	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	35	42	18	23	0/11	

Notes:

a. Based on T_C = 25 °C.

b. Surface mounted on 1" x 1" FR4 board. c. t = 10 s.

d. Maximum under steady state conditions for channel 1 is 110 °C/W and channel 2 is 87 °C/W.

Document Number: 67583 S11-0860-Rev. A, 02-Mar-11

www.vishay.com

Vishay Siliconix

Parameter	Symbol	erwise noted) Test Conditions			Тур.	Max.	Unit
Static						1	1
	N/	$V_{GS} = 0 V, I_D = 250 \mu A$	Ch-1	20			
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = 250 \mu A$	Ch-2	20			V
V Tomporatura Coofficient		I _D = 250 μA	Ch-1		20		
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 25 mA	Ch-2		22		
	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-1		- 4.4		mV/°C
V _{GS(th)} Temperature Coefficient		I _D = 25 mA	Ch-2		- 4.6		
O she Thursda she hi Malta an	N/	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	Ch-1	1		2.5	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	Ch-2	1		2.5	V
		$V_{DS} = 0 V, V_{GS} = \pm 20 V$	Ch-1			100	<u> </u>
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$	Ch-2			100	nA
Zero Gate Voltage Drain Current		$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1	μA
		$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			100	
	IDSS	$V_{DS} = 20$ V, $V_{GS} = 0$ V, $T_{J} = 85$ °C	Ch-1			15	
		V_{DS} = 20 V, V_{GS} = 0 V, T_{J} = 85 °C	Ch-2			10 000	
	I _{D(on)}	V _{DS} ≥ 5 V, V _{GS} = 10 V	Ch-1	20			А
On-State Drain Current ^b		V _{DS} ≥ 5 V, V _{GS} = 10 V	Ch-2	30			
Drain-Source On-State Resistance ^b	R _{DS(on)}	V _{GS} = 10 V, I _D = 11.5 A	Ch-1		0.0065	0.0085	Ω
		V _{GS} = 10 V, I _D = 15.2 A	Ch-2		0.0060	0.0070	
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$	Ch-1		0.0091	0.0115	
	F	V _{GS} = 4.5 V, I _D = 14 A	Ch-2		0.0077	0.0095	
	9 _{fs}	V _{DS} = 10 V, I _D = 11.5 A	Ch-1		28		
Forward Transconductance ^b		V _{DS} = 10 V, I _D = 15.2 A	Ch-2		44		S
Dynamic ^a	<u> </u>		1		1	I	
			Ch-1		862		
Input Capacitance	C _{iss}	Channel-1	Ch-2		956		
Output Capacitance	C _{oss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	Ch-1		280		pF
Ouput Capacitance	O _{OSS}	Channel-2	Ch-2		363		
Reverse Transfer Capacitance	C _{rss}	V_{DS} = 10 V, V_{GS} = 0 V, f = 1 MHz	Ch-1		116		
	133		Ch-2		120		
		$V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$	Ch-1		17.4	26	
Total Gate Charge	Qg	$V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$	Ch-2		17.8	27	nC
-	0	Channel-1	Ch-1		8.1	12.5	
		$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 12 \text{ A}$	Ch-2		8.4	12.5	
Gate-Source Charge	Q _{gs}		Ch-1		2.2		
	Q _{gd}	Channel-2	Ch-2 Ch-1		2.6 2.4		
Gate-Drain Charge		V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 12 A	Ch-2		2.4		-
			Ch-1		2.5	4.4	
Gate Resistance	R _g	f = 1 MHz	Ch-2		2.6	5.2	Ω

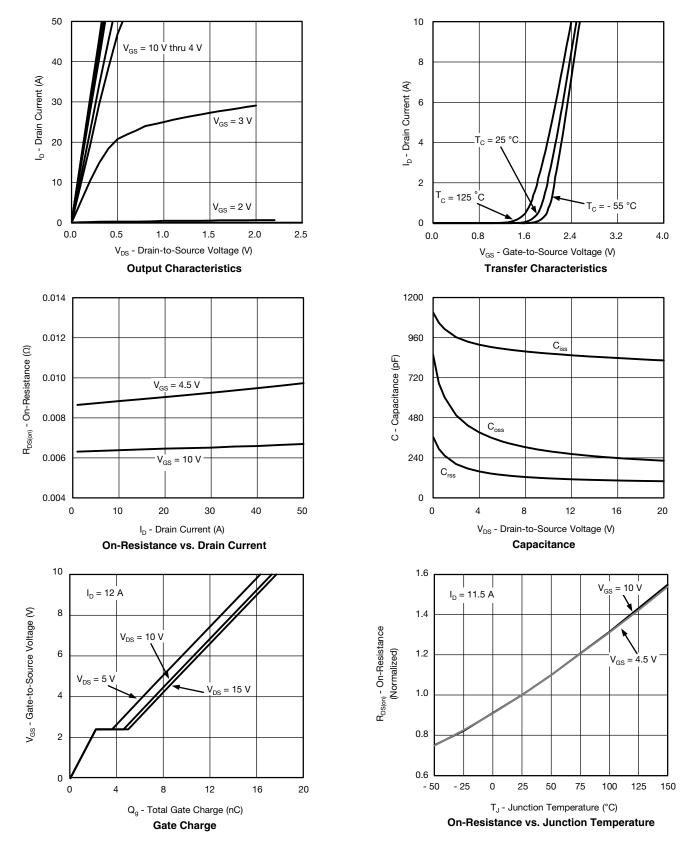
Notes:

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

Vishay Siliconix

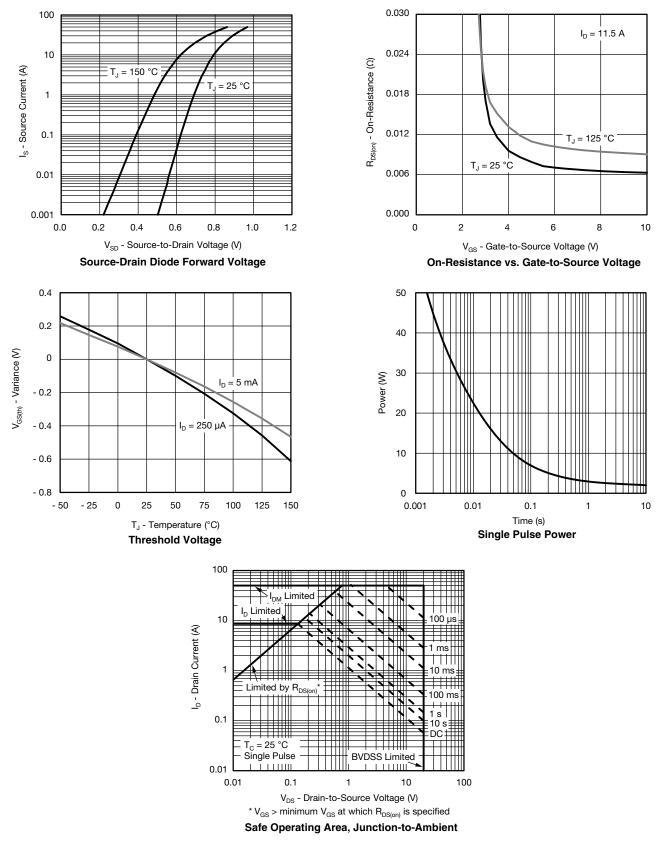
Parameter	Test Conditions	Min.	Тур.	Max.	Unit					
Dynamic ^a										
Turn-On Delay Time	t _{d(on)}	Observald	Ch-1		18	35				
	-d(0n)	Channel-1 V _{DD} = 10 V, R _I = 1 Ω	Ch-2		20	40				
Rise Time			Ch-1		37	70	4			
			Ch-2		34	65				
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		19	35	-			
		$V_{DD} = 10 \text{ V}, \text{ R}_{L} = 1 \Omega$	Ch-2 Ch-1		21 10	40 20				
Fall Time	t _f	$I_D \cong 10 \text{ A}, \text{ V}_{\text{GEN}} = 4.5 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$			10	20	{			
			Ch-2 Ch-1		9	18	- ns			
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		9	18				
$\label{eq:VDD} \begin{array}{c} V_{DD} = 10 \text{ V}, \text{ R}_{L} = 1 \Omega \\ \text{Rise Time} & t_{r} & \text{I}_{D} \cong 10 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V}, \text{ R}_{g} \end{array}$		V_{DD} = 10 V, R_L = 1 Ω	Ch-1		13	26				
	$I_D \cong 10 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$	Ch-2		13	26	-				
Ture Off Delay Time	v Time t v m Channel-2	Ch-1		16	32					
Turn-Off Delay Time	t _{d(off)}	$V_{DD} = 10 \text{ V}, \text{ R}_{\text{I}} = 1 \Omega$	Ch-2		15	30	-			
Fall Time	t _f	$I_D \cong 10 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$	Ch-1		8	16				
			Ch-2		8	16				
Drain-Source Body Diode Characteristic	s	1		1	T	1				
Continuous Source-Drain Diode Current	۱ _S	T _C = 25 °C	Ch-1			2.5	A			
			Ch-2			4.5				
Pulse Diode Forward Current ^a	I _{SM}		Ch-1			50				
		I _S = 5 A	Ch-2		0.70	60				
Body Diode Voltage	V _{SD}	ŭ	Ch-1		0.76	1.2	v			
		I _S = 2.5 A	Ch-2		0.43	0.55				
Body Diode Reverse Recovery Time	t _{rr} Q _{rr}		Ch-1		18	36	ns			
		Channel-1	Ch-2		18 7	36				
Body Diode Reverse Recovery Charge		$I_F = 9.2 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, \text{ T}_J = 25 ^\circ\text{C}$	Ch-1 Ch-2		7	14 14	nC			
			Ch-2 Ch-1		8	14				
Reverse Recovery Fall Time	t _a	Channel-2 I _F = 2.5 A, dl/dt = 100 A/μs, T _J = 25 °C	Ch-2		10					
	t _b	$F = 2.5 \text{ A}, \text{ al/at} = 100 \text{ A/} \mu \text{s}, \text{ I}_{\text{J}} = 25 \text{ °C}$	Ch-1		9		ns			
Reverse Recovery Rise Time			Ch-2		9					

Notes:

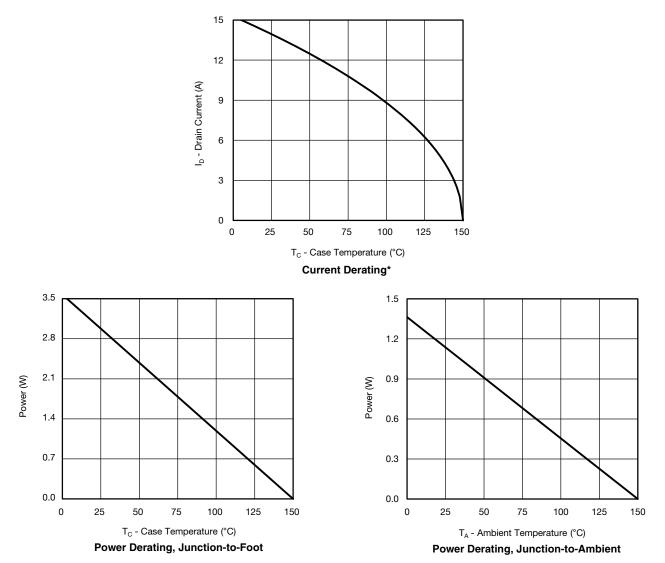

a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

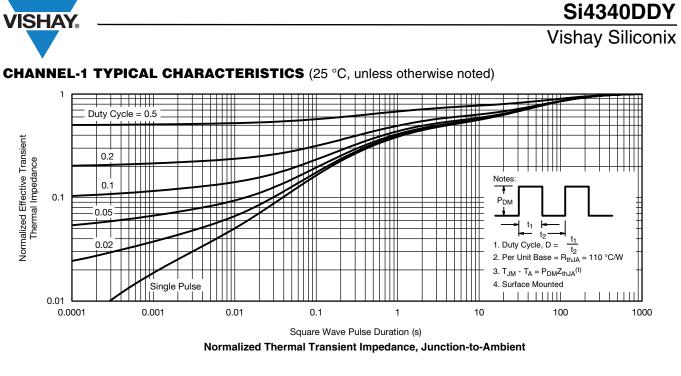

Document Number: 67583 S11-0860-Rev. A, 02-Mar-11

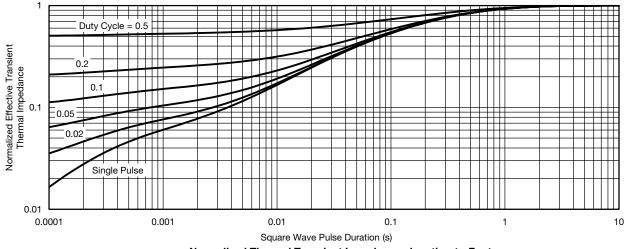
VISHAY


Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Vishay Siliconix

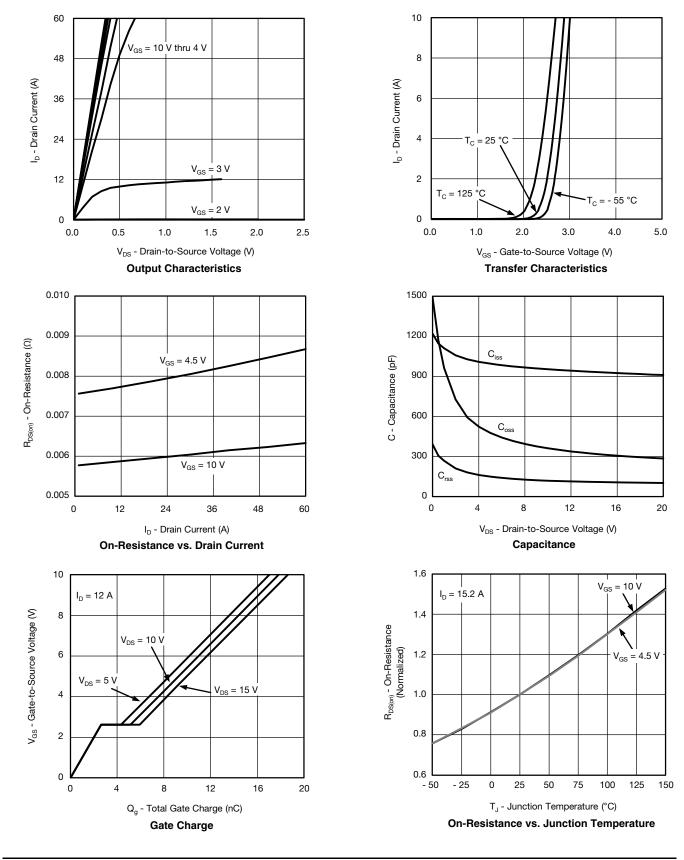



* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

www.vishay.com

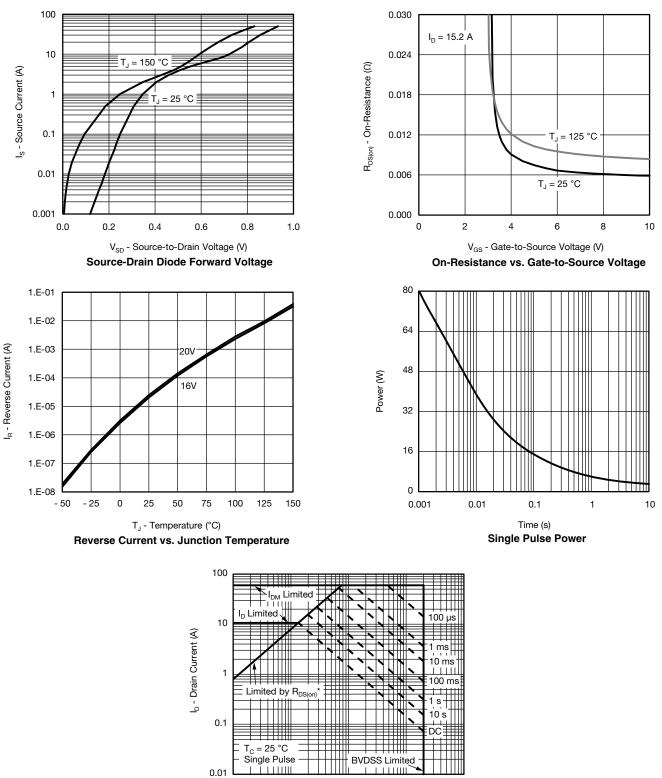
6

Document Number: 67583 S11-0860-Rev. A, 02-Mar-11



Normalized Thermal Transient Impedance, Junction-to-Foot

www.vishay.com 8 Document Number: 67583 S11-0860-Rev. A, 02-Mar-11


VISHAY

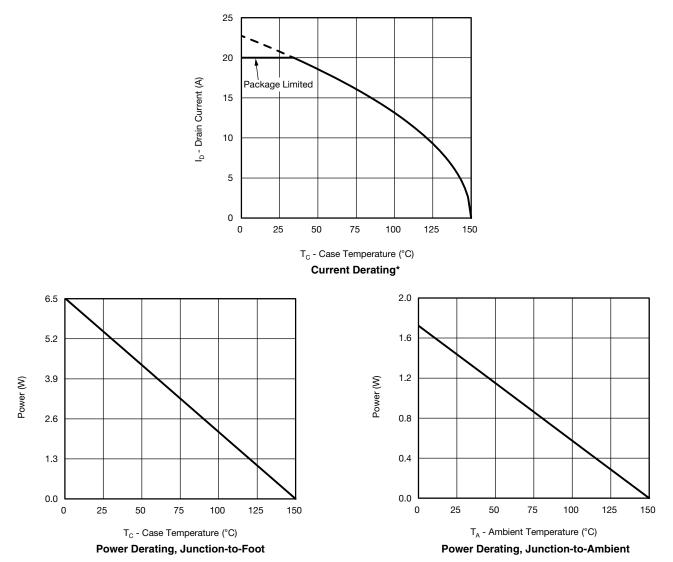
Si4340DDY Vishay Siliconix

- - , -

1

10

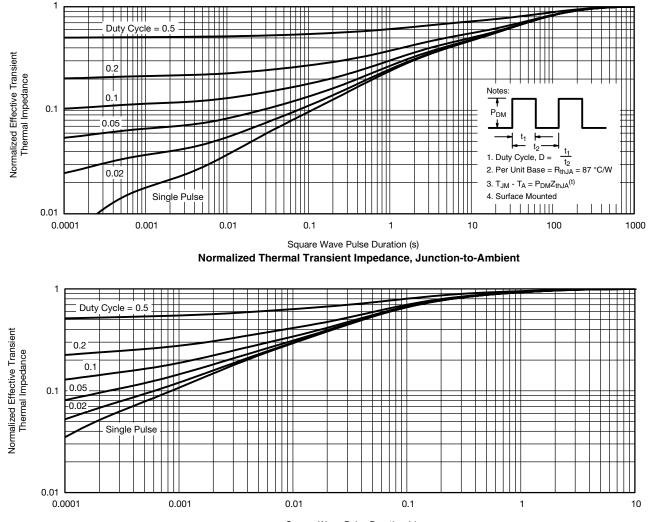
100


This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

0.01

0.1

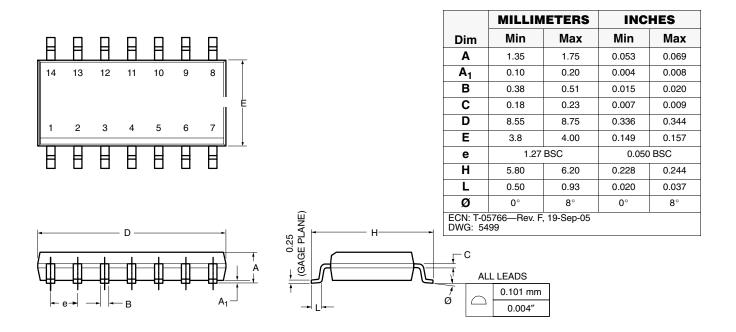
Vishay Siliconix



* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Square Wave Pulse Duration (s) Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67583.

Package Information Vishay Siliconix

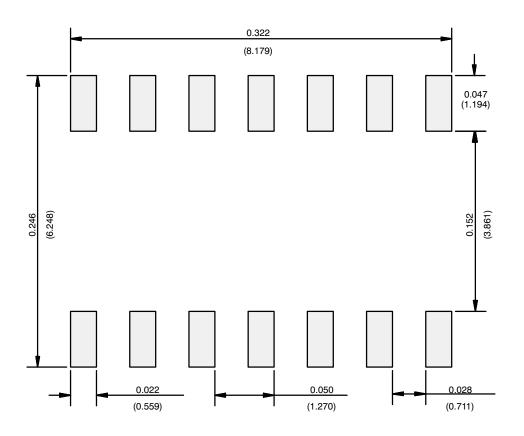
SOIC (NARROW): 14-LEAD

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.


The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-14

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.