

SANYO Semiconductors DATA SHEET

Monolithic Linear IC For Optical Disk Applications 6-chnnel Driver

Overview

The LA6261D is a 6-channel driver (BTL: 4ch, H-bridge: 2ch) developed for use in optical disk applications.

Functions

- Power amplifier 4-channel (BTL), 2-channel (H-bridge) built-in
- IO max 700mA (Each channel)
- Level shift circuit built-in (BTL AMP)
- Overheat protection circuit (thermal shutdown) built-in
- Separate power supply for H-bridge (2ch)
- 3.3V regulator controller incorporated (output transistor provided externally)
- With each H-bridge output control pin

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		14	V
Maximum output current	I _O max	Each channel for ch1 to ch6	0.7	А
Maximum input voltage	V _{IN} B		13	V
Mute pin voltage	VMUTE		13	V
Allowable power dissipation	Pd max	Independent IC	1.2	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

	-			
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		5.6 to 13	V

Electrical Characteristics at Ta = 25°C, V_{CC}1=V_{CC}2=8V, VREF=1.65V, unless otherwise specified.

Doromotor	Symbol	Conditions	Ratings			Linit	
Farameter	Symbol	Conditions	min	typ	max	Unit	
All Blocks							
No-load current drain ON	I _{CC} -ON	All outputs ON *1 FWD = REV = 0V		30	50	mA	
VREF Input voltage range	VREF-IN		1		VCC-1.5	V	
BTL AMP Block							
Output offset voltage	VOFF	Voltage difference between channels	-50		50	mV	
Input voltage range	VIN	Input to V _{IN} 1,2,3 and 4	0		VCC	V	
Output voltage (Saturated)	V_{O} Voltage between each V_{O}^{+} and V_{O}^{-} with $R_{L} = 8\Omega$		4	5		V	
Closed-circuit voltage gain	VG	Gain between input and output		4		Times	
Input voltage for MUTE ON	r MUTE ON V _{MT} ON *3		2		SVCC	V	
Input voltage for MUTE OFF	V _{MT} OFF	OFF *3			0.5	V	
Slew rate SR ×2 between the amp and output		×2 between the amp and output		0.5		V/µs	
H Bridge Block							
Output voltage (Saturated) V _O -LOAD		Voltage between each V_O ⁺ and V_O ⁻ with RL=10 Ω *2	6.2	6.7		V	
Input low-level	VIN-L		0		1	V	
Input high-level	it high-level V _{IN} -H		2		SVCC	V	
$ \begin{array}{c} \mbox{Output voltage (Controlled)} & V_{CONT} & \mbox{Voltage between each V}_{O}^+ \mbox{ and V}_{O}^- \mbox{ with } \\ V_{CONT} = 3 \mbox{V and } R_L = 10 \Omega \end{array} $		Voltage between each VO ⁺ and VO ⁻ with VCONT = 3V and RL = 10 Ω		2.8		V	
Regulator Block							
Output voltage	Vreg	IL = 100mA	3.05	3.3	3.55	V	
Fluctuating output load	ΔV_{RL}	IL = 0 to 200mA	-50	0	10	mV	
Fluctuating supply voltage	ΔVvcc	$V_{CC} = 6 \text{ to } 12 \text{V}, \text{I}_{L} = 100 \text{mA}$	-15	21	60	mV	

*1 Total current dissipation of $\mathsf{SV}_{CC},\,\mathsf{PV}_{CC}\mathsf{1}$ and $\mathsf{PV}_{CC}\mathsf{2}$ at no load.

*2 Output in the saturated condition.

*3 BTL output ON with MUTE: [H] and BTL output OFF (HI impedance) with MUTE: [L].

*4 Design value

Package Dimensions

unit : mm (typ) 3170A

Block Diagram

Pin Function						
Pin No.	Pin Name	function	Equivalent circuit			
1	V _O 4 ⁻	BTL Output pin (-) for channel 4				
2	V _O 4+	BTL Output pin (+) for channel 4	28			
28	PV _{CC} 1	Power for channels 1,2,3 and 4 (BTL), (SV $_{CC}$ short-circuited)				
30	PGND1	Power GND for channels 1,2,3 and 4 (BTL)				
31	V _O 1 ⁻	BTL Output pin (-) for channel 1				
32	V _O 1+	BTL Output pin (+) for channel 1				
33	V _O 2 ⁻	BTL Output pin (-) for channel 2				
34	V _O 2+	BTL Output pin (+) for channel 2				
35	V _O 3 ⁻	BTL Output pin (-) for channel 3				
36	V _O 3+	BTL Output pin (+) for channel 3				
			30			
3	V05-	H-bridge Output pin (-) for channel 5				
4	V05+	H-bridge Output pin (+) for channel 5	9			
5	V06-	H-bridge Output pin (-) for channel 6	•			
6	V ₀ 6+	H-bridge Output pin (+) for channel 6				
7	PGND2	Power GND for channels 5 and 6 (H-bridge)				
9	PV _{CC} 2	Power for channels 5 and 6 (H-bridge)				
			Vo*			
			2			
			7			
8	MUTE	Input pin for BTL mute				
			PV _{CC}			
			SGND			
12	VREFIN	Reference voltage input pin				
			()			
			SGND			
13	VCONT6	Input pin for CH6 output voltage control				
16	VCONT5	Input pin for CH5 output voltage control				
			→ PGND 🗧			
			PGND			
14 15		CH6 Output change pin (REV), Logic input for H bridge				
17	REV5	CH5 Output change pin (REV) Logic input for H bridge				
18	FWD5	CH5 Output change pin (FWD). Logic input for H bridge	FWD* 50kΩ			
			本 g↓			
			_ ↓ SGND			

Continued on next page.

LA6261D

Continued from preceding page.							
Pin No.	Pin Name	function	Equivalent circuit				
19	V _{IN} 4G	Input pin for channel 4 (for gain control)	0				
20	V _{IN} 4	Input pin for channel 4	PV _{CC}				
21	V _{IN} 3G	Input pin for channel 3 (for gain control)					
22	V _{IN} 3	Input pin for channel 3					
23	V _{IN} 2G	Input pin for channel 2 (for gain control)					
24	V _{IN} 2	Input pin for channel 2					
25	V _{IN} 1G	Input pin for channel 1 (for gain control)					
26	V _{IN} 1	Input pin for channel 1					
			SGND				
27	REGOUT	Regulator pin (External PNP collector)	PVCC 300Ω PGND SGND				
29	REGIN	Regulator pin (External PNP base)	PVCC G PVCC G 1000 29 PGND				

Truth Table (H Bridge)

INF	TUY	OUT	PUT	
FWD5(6)	REV5(6)	V _O 5(6) ⁺	V _O 5(6)⁻	
L	L	Z	Z	
L	н	н	L	
н	L	L	н	
Н	Н	L	L	

Application Circuit Example

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2007. Specifications and information herein are subject to change without notice.