MOS INTEGRATED CIRCUIT μ PD780232

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

EC

The μ PD780232 is a member of the μ PD780232 Subseries in the 78K/0 Series.

The μ PD780232 Subseries consists of products that incorporate a VFD controller/driver for panel control.

A flash memory version, the μ PD78F0233, that can operate within the same power supply voltage range as the mask ROM version, and various development tools are also under development.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD780232 Subseries User's Manual: U13364E 78K/0 Series User's Manual Instructions: U12326E

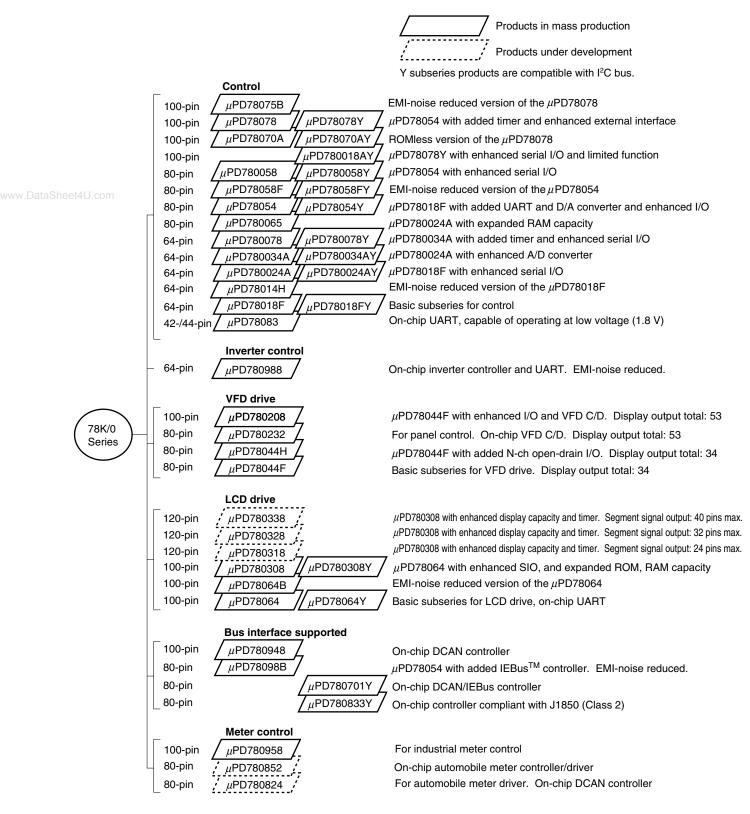
FEATURES

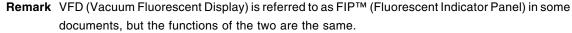
- I/O ports: 40
- Internal ROM and RAM
 - Internal ROM: 16 KB
 - Internal high-speed RAM: 768 bytes
 - Internal buffer RAM: 32 bytes
 - VFD display RAM: 112 bytes
- VFD controller/driver: 53 display outputs (Universal grid supported)
- 8-bit resolution A/D converter: 4 channels
- Serial interface: 2 channels
- Timer: 4 channels
- Power supply voltage: VDD = 4.5 to 5.5 V
- Minimum instruction execution time can be changed from high speed (0.4 μs) to low speed (6.4 μs)

APPLICATIONS

Monolithic mini components, separated mini components, tuners, cassette tape decks, CD/MD players, audio amplifiers, etc.

ORDERING INFORMATION


Part Number	Package
μPD780232GC-×××-8BT	80-pin plastic QFP (14 $ imes$ 14)


Remark ××× indicates ROM code suffix.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ 78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

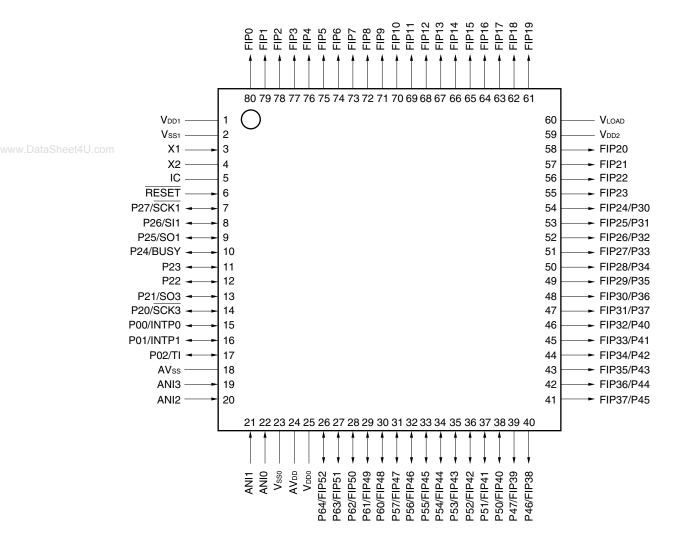
The major functional differences among the subseries are shown below.	The major functional	differences	among	the :	subseries	are	shown below.
---	----------------------	-------------	-------	-------	-----------	-----	--------------

	Function	ROM Capacity		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	VDD MIN.	External
Subser	ies Name	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Contro	μPD78075B	32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	\checkmark
	μPD78078	48 K to 60 K											
	μPD78070A	_									61	2.7 V	
	µPD780058	24 K to 60 K	2 ch							3 ch (time-division UART: 1 ch)	68	1.8 V	
	μPD78058F	48 K to 60 K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780065	40 K to 48 K							-	4 ch (UART: 1 ch)	60	2.7 V	
m	μPD780078	48 K to 60 K		2 ch			-	8 ch		3 ch (UART: 2 ch)	52	1.8 V	
	µPD780034A	8 K to 32 K		1 ch						3 ch (UART: 1 ch)	51		
	µPD780024A						8 ch	-					
	μPD78014H									2 ch	53		
	μPD78018F	8 K to 60 K											
	μPD78083	8 K to 16 K		_	-					1 ch (UART: 1 ch)	33		-
Inverte control	· ·	16 K to 60 K	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch)	47	4.0 V	\checkmark
VFD	μPD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	-
drive	µPD780232	16 K to 24 K	3 ch	_	-		4 ch				40	4.5 V	
	μPD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V	
	μPD78044F	16 K to 40 K								2 ch			
LCD	µPD780338	48 K to 60 K	3 ch	2 ch	1 ch	1 ch	-	10 ch	1 ch	2 ch (UART: 1 ch)	54	1.8 V	-
drive	µPD780328										62		
	μPD780318										70		
	µPD780308	48 K to 60 K	2 ch	1 ch			8 ch	-	-	3 ch (time-division UART: 1 ch)	57	2.0 V	
	μPD78064B	32 K								2 ch (UART: 1 ch)			
	μPD78064	16 K to 32 K											
Bus	μPD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	-	-	3 ch (UART: 1 ch)	79	4.0 V	\checkmark
interfac supporte		40 K to 60 K		1 ch					2 ch		69	2.7 V	_
Meter control	μPD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	_	-	_	2 ch (UART: 1 ch)	69	2.2 V	_
Dash-	μPD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	_	3 ch (UART: 1 ch)	56	4.0 V	-
board control	μPD780824	32 K to 60 K								2 ch (UART: 1 ch)	59	1	

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

FUNCTION OVERVIEW

	tem	Function			
Internal memory	ROM	16 KB			
	High-speed RAM	768 bytes			
	Buffer RAM	32 bytes			
	VFD display RAM	112 bytes			
General-purpose	register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)			
Minimum instructi	on execution time	 On-chip minimum instruction execution time variable function 0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (@ 5.0 MHz operation with system clock) 			
Instruction set		 Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) 			
I/O ports (including alternate	e-function pins for VFD)	Total:40• CMOS I/Os:11• P-ch open-drain I/Os:13• P-ch open-drain outputs:16			
VFD controller/dri	ver	Total of display outputs: 53 • 15 mA display current: 20 • 5 mA display current: 33			
A/D converter		 8-bit resolution × 4 channels Power supply voltage: AV_{DD} = 4.5 to 5.5 V 			
Serial interface		3-wire serial mode (automatic transmit/receive function): 1 channel 2-wire serial mode (transmit only): 1 channel			
Timer		 8-bit remote control timer: 1 channel 8-bit timer: 2 channels Watchdog timer: 1 channel 			
Vectored interrupt	Maskable	Internal: 10, external: 2			
sources	Non-maskable	Internal: 1			
	Software	1			
Power supply volt	age	V _{DD} = 4.5 to 5.5 V			
Package		80-pin plastic QFP (14 \times 14)			

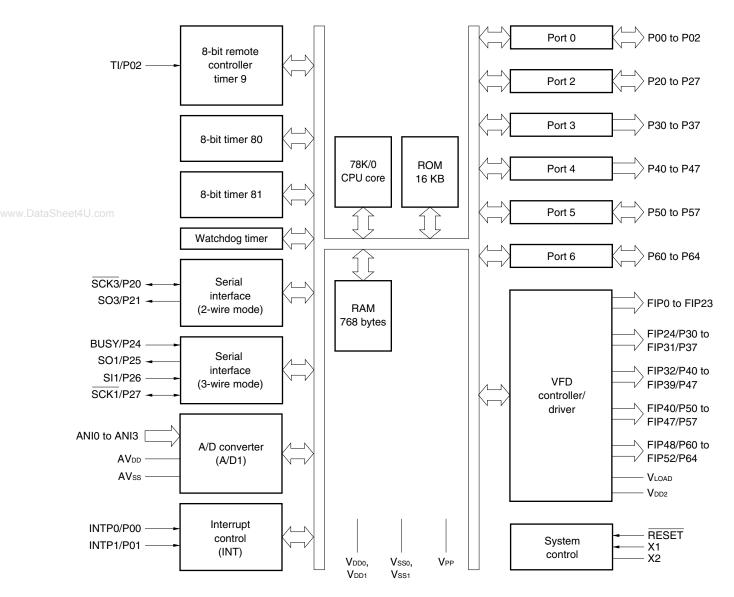


CONTENTS

	1.	PIN CONFIGURATION (TOP VIEW)	. 6
	2.	BLOCK DIAGRAM	. 8
	3.	PIN FUNCTIONS	. 9
		3.1 Port Pins	9
		3.2 Non-Port Pins	10
		3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	11
DataSheet4U.co	4.	MEMORY SPACE	13
	5.	PERIPHERAL HARDWARE FUNCTION FEATURES	14
		5.1 Port	14
		5.2 Clock Generator	15
		5.3 Timer/Event Counter	15
		5.4 A/D Converter	18
		5.5 Serial Interface	18
		5.6 VFD Controller/Driver	19
	6.	INTERRUPT FUNCTIONS	21
	7.	STANDBY FUNCTION	24
	8.	RESET FUNCTION	24
*	9.	MASK OPTION	24
	10.	INSTRUCTION SET	25
	11.	ELECTRICAL SPECIFICATIONS	28
	12.	PACKAGE DRAWING	42
*	13.	RECOMMENDED SOLDERING CONDITIONS	43
	ΑΡ	PENDIX A. DEVELOPMENT TOOLS	44
	AP	PENDIX B. RELATED DOCUMENTS	47

1. PIN CONFIGURATION (TOP VIEW)

80-pin plastic QFP (14 × 14) μPD780232GC-×××-8BT


Cautions 1. Connect directly the IC (Internally Connected) pin to Vss1.

- 2. Connect the AVDD pin to VDD1.
- 3. Connect the AVss pin to Vss1.
- **Remark** When the μPD780232 is used in application fields that require reduction of the noise from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

ANI0 to ANI3:	Analog input	P50 to P57:	Port 5
AVDD:	Analog power supply	P60 to P64:	Port 6
AVss:	Analog ground	RESET:	Reset
BUSY:	Busy	SCK1, SCK3:	Serial clock
FIP0 to FIP52:	Fluorescent indicator panel	SI1:	Serial input
IC:	Internally connected	SO1, SO3:	Serial output
INTP0, INTP1	External interrupt input	TI:	Timer input
P00 to P02:	Port 0	VDD0 to VDD2:	Power supply
P20 to P27:	Port 2	VLOAD:	Negative power supply
P30 to P37:	Port 3	Vsso, Vss1:	Ground
P40 to P47:	Port 4	X1, X2:	Crystal

ww.DataSheet4U.com

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

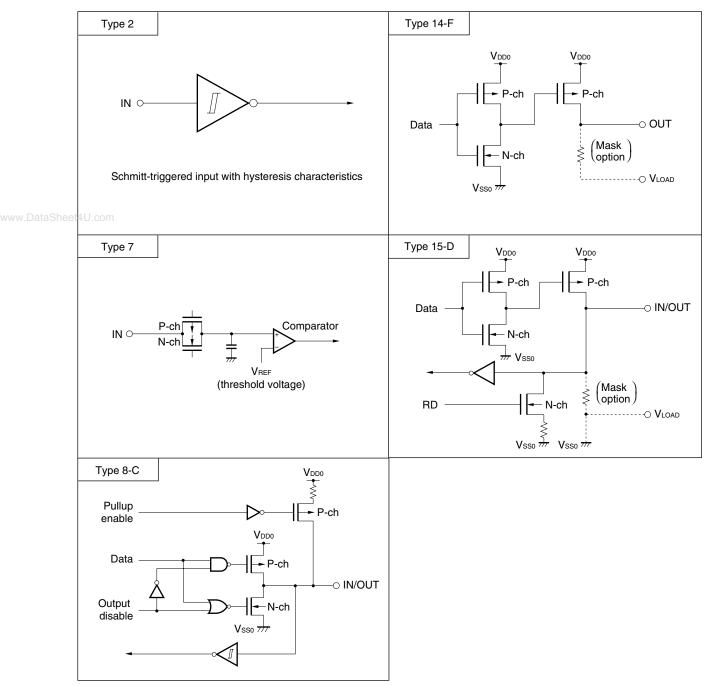
3.1 Port Pins

	Pin Name	I/O	Function	After	Alternate
				Reset	Function
P	°00	I/O	Port 0.	Input	INTP0
Ρ	°01		3-bit I/O port. Input/output can be specified in 1-bit units.		INTP1
Р	°02		When used as an input port, an on-chip pull-up resistor can be specified by software.		ті
Р	°20	I/O	Port 2.	Input	SCK3
	21		8-bit I/O port.		SO3
P	22, P23		Input/output can be specified in 1-bit units.		_
Р	P24		When used as an input port, an on-chip pull-up resistor can be specified by software.		BUSY
Р	°25				SO1
Ρ	°26				SI1
Ρ	27				SCK1
P	P30 to P37	Output	Port 3. P-ch open-drain 8-bit high-tolerance output port. A pull-down resistor can be incorporated in 1-bit units to VLOAD by mask option.	Output	FIP24 to FIP31
P	240 to P47	Output	Port 4. P-ch open-drain 8-bit high-tolerance output port. A pull-down resistor can be incorporated in 1-bit units to VLOAD by mask option.	Output	FIP32 to FIP39
Ρ	250 to P57	I/O	Port 5. P-ch open-drain 8-bit high-tolerance I/O port. Input/output can be specified in 1-bit units. A pull-down resistor can be incorporated in 1-bit units by mask option (Connection to VLOAD or VSSO can be specified in 1-bit units).	Input	FIP40 to FIP47
Ρ	P60 to P64	I/O	Port 6. P-ch open-drain 5-bit high-tolerance I/O port. Input/output can be specified in 1-bit units. A pull-down resistor can be incorporated in 1-bit units by mask option (Connection to VLOAD or VSSO can be specified in 1-bit units).	Input	FIP48 to FIP52

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	falling edge, or both rising and falling edges) can be specified.		P00
INTP1				P01
ті	Input	pit remote control timer 9 (TM9) timer input		P02
SCK3	I/O	Serial interface serial clock input/output	Input	P20
SO3	Output	Serial interface serial data output	Input	P21
BUSY	Input	Serial interface automatic transmit/receive busy signal input	Input	P24
SO1	Output	Serial interface serial data output	Input	P25
t4 Sl1 om	Input	Serial interface serial data input	Input	P26
SCK1	I/O	Serial interface serial clock input/output	Input	P27
FIP0 to FIP23	Output	VFD controller/driver high-tolerance large current output.	Output	_
FIP24 to FIP31		A pull-down resistor can be incorporated to $V_{\mbox{\scriptsize LOAD}}$ in 1-bit units by a mask		P30 to P37
FIP32 to FIP39		option.		P40 to P47
FIP40 to FIP47		VFD controller/driver high-tolerance large current output.	Input	P50 to P57
FIP48 to FIP52		A pull-down resistor can be incorporated in 1-bit units by a mask option (Connection to V_{LOAD} or V_{SS0} can be specified in 1-bit units).		P60 to P64
VLOAD		Connecting pull-down resistor for VFD controller/driver	_	_
RESET	Input	System reset input	_	_
X1	Input	Connecting crystal resonator for system clock oscillation	_	_
X2			_	_
ANI0 to ANI3	Input	A/D converter analog input	Input	_
AVDD	_	A/D converter analog power supply/reference voltage input. Make the same potential as V _{DD1} .	_	_
AVss	_	A/D converter ground potential. Make the same potential as Vss1.	_	_
VDD0	_	Positive power supply for ports		_
VDD1	_	Positive power supply except for ports, analog block, and VFD controller/driver		_
V _{DD2}	_	Positive power supply for VFD controller/driver	_	_
Vsso	_	Ground potential for ports		_
V _{SS1}	_	Ground potential except for ports and analog block		_
IC	_	Internally connected. Connect directly to Vss1.	_	_

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins


The I/O circuit type of each pin and the recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, see **Figure 3-1**.

 \star

Table 3-1. Types of Pin I/O Circuits

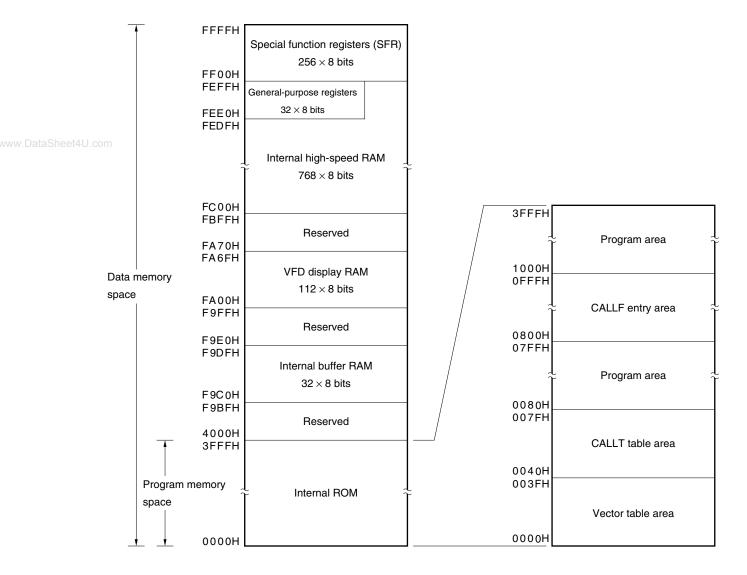

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0	8-C	I/O	Input: Independently connect to Vsso via a resistor.
P01/INTP1			Output: Leave open.
P02/TI			
P20/SCK3			Input: Independently connect to VDD0 or VSS0 via a resistor.
P21/SO3			Output: Leave open.
P22, P23			
P24/BUSY			
P25/SO1			
P26/SI1			
P27/SCK1			
P30/FIP24 to P37/FIP31	14-F	Output	Leave open.
P40/FIP32 to P47/FIP39			
P50/FIP40 to P57/FIP47	15-D	I/O	Input: Independently connect to VDD0 or VSS0 via a resistor.
P60/FIP48 to P64/FIP52			Output: Leave open.
FIP0 to FIP23	14-F	Output	Leave open.
RESET	2	Input	_
ANI0 to ANI3	7		Connect to VDD0 or Vsso.
AVDD		_	Connect to VDD1.
AVss			Connect to Vss1.
VLOAD			
IC			Connect directly to Vss1.

Figure 3-1. Pin I/O Circuits

4. MEMORY SPACE

The memory map of the μ PD780232 is shown in Figure 4-1.

Figure 4-1. Memory Map

5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 Port

There are three kinds of I/O ports.

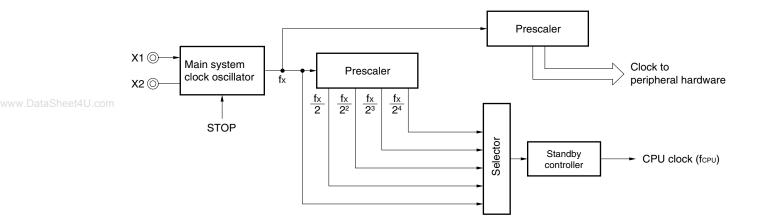
• CMOS I/O (ports 0, 2):	11

• P-ch open-drain output (ports 3, 4): 16

• P-ch open-drain I/O (ports 5, 6): 13

Total: 40

Table 5-1. Port Functions

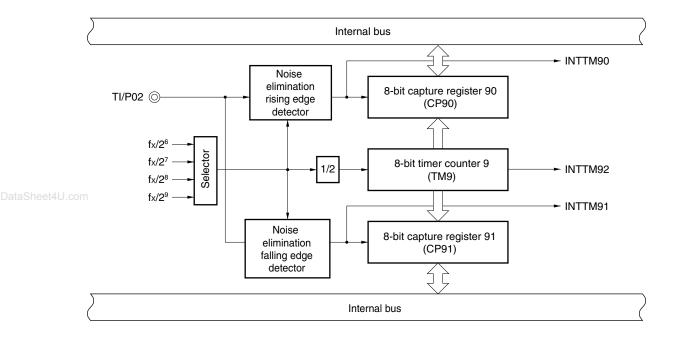

	U.Name	Pin Name	Function				
	Port 0	P00 to P02	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip resistor can be specified by software.				
	Port 2	P20 to P27	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip resistor can be specified by software.				
Port 3 P30 to P37 Port 4 P40 to P47			P-ch open-drain high-tolerance output port. A pull-down resistor can be incorporated in 1-bit units to VLOAD by a mask option.				
			P-ch open-drain high-tolerance output port. A pull-down resistor can be incorporated in 1-bit units to VLOAD by a mask option.				
	Port 5	P50 to P57	P-ch open-drain high-tolerance I/O port. Input/output can be specified in 1-bit units. A pull-down resistor can be incorporated in 1-bit units by a mask option (Connection to V _{LOAD} or V _{SS0} can be specified in 1-bit units).				
-	Port 6	P60 to P64	P-ch open-drain high-tolerance I/O port. Input/output can be specified in 1-bit units. A pull-down resistor can be incorporated in 1-bit units by a mask option (Connection to VLOAD or VSSO can be specified in 1-bit units).				

5.2 Clock Generator

The minimum instruction execution time can be changed.

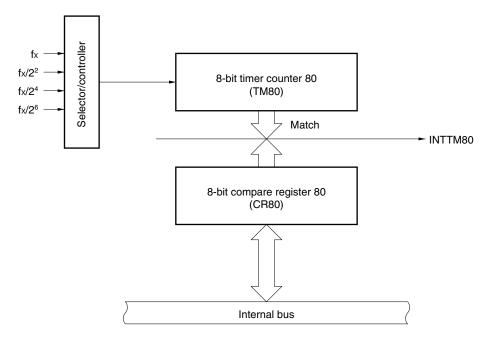
• 0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s (@ 5.0 MHz operation with main system clock)

Figure 5-1. Clock Generator Block Diagram


5.3 Timer/Event Counter

Four timer/event counter channels are incorporated.

- 8-bit remote control timer: 1 channel
- 8-bit timer: 2 channels
- Watchdog timer: 1 channel


Table 5-2. Timer/Event Counter Operations

		8-Bit Remote Control Timer	8-Bit Timer	Watchdog Timer
Operation mode	Interval timer	_	2 channels	1 channel
Function	Pulse width measurement	1 input	—	_
	Interrupt source	3	2	1

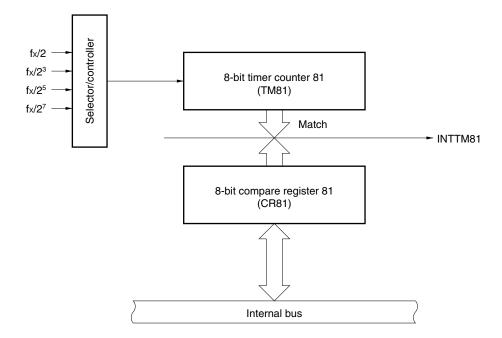
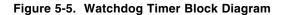
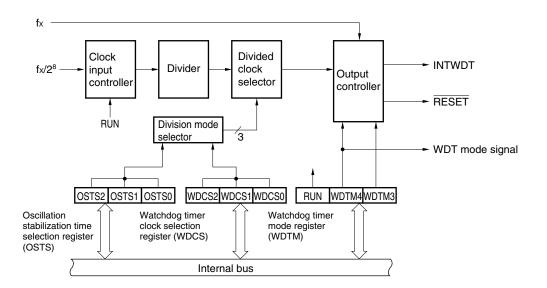


Figure 5-2. Block Diagram of 8-Bit Remote Control Timer (TM9)

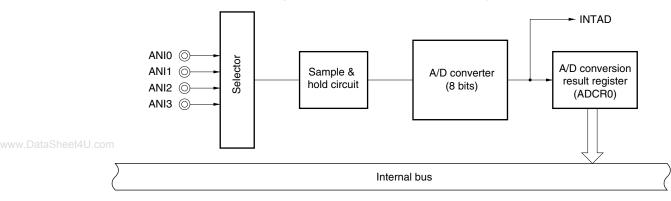
Figure 5-3. Block Diagram of 8-Bit Timer (TM80)





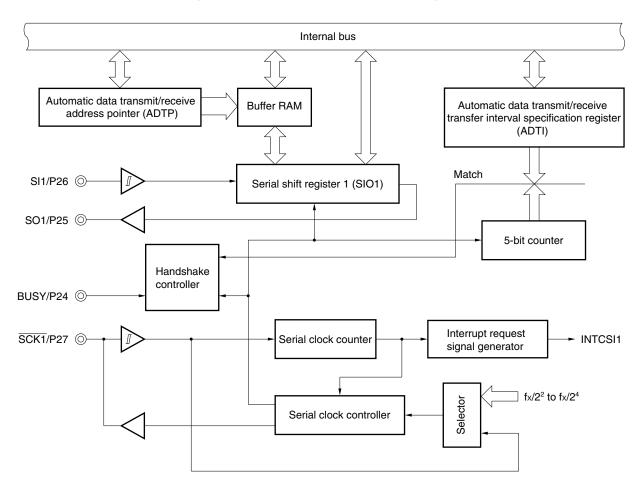
www.DataSheet/III.com

 \star



5.4 A/D Converter

An 8-bit resolution 4-channel A/D converter is incorporated. A/D conversion can be started by software only.



5.5 Serial Interface

Two clocked serial interface channels are incorporated.

Serial interface SIO1 operates in the 3-wire serial mode (with automatic transmit/receive function), in which MSB first/LSB first switching is possible.

Serial interface SIO3 operates in the 2-wire serial mode (transmit only) in which the first bit is fixed to MSB.

Figure 5-7. Serial Interface SIO1 Block Diagram

DataSheet4U.com

Figure 5-8. Serial Interface SIO3 Block Diagram

5.6 VFD Controller/Driver

A VFD controller/driver with the following functions is incorporated.

- (a) Total number of display outputs: 53. Output of 16 patterns is enabled.
- (b) 112-byte display RAM is provided to enable display signal output by reading display data automatically (direct memory access (DMA)).
- (c) A port pin that is not used for VFD display can be used as an output port or an I/O port (except for FIP0 to FIP23, which are VFD output-only pins).
- (d) The luminance can be adjusted in 8 levels using display mode register 1 (DSPM1).
- (e) Hardware taking into consideration the key scan application is incorporated.
- (f) Whether the key scan timing is inserted or not is selectable.
- (g) A high-tolerance output buffer (VFD driver) that can drive the VFD directly is incorporated.
- (h) VFD output pins can incorporate a pull-down resistor, set by a mask option.

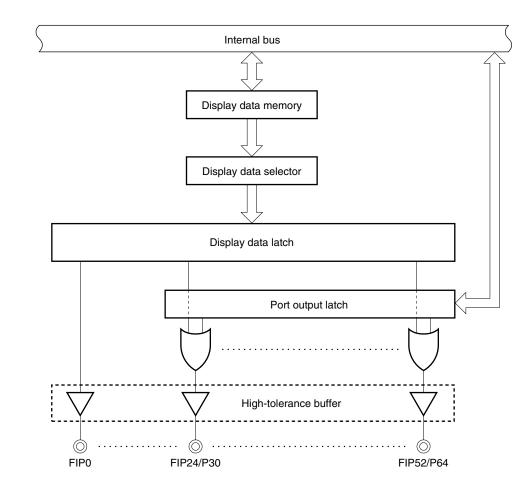


Figure 5-9. VFD Controller/Driver Block Diagram

6. INTERRUPT FUNCTIONS

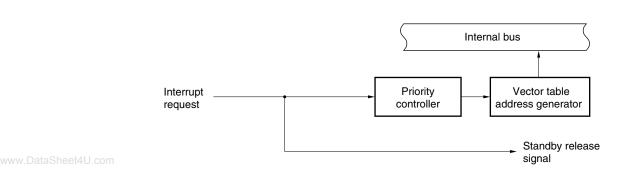
There are 3 types of interrupt functions.

1

- Non-maskable: 1
- Maskable: 12
- Software:

Table 6-1.	Interrupt	Source List	

	Interrupt	Default		Interrupt Source	Internal/	Vector Table	Basic Configuration
	Туре	Priority ^{Note 1}	Name	Trigger	External	Address	Type ^{Note 2}
DataSheet4U.com	Non- maskable	_	INTWDT	Watchdog timer overflow (when watchdog timer mode 1 is selected)	Internal	0004H	(A)
	Maskable	0	INTWDT	Watchdog timer overflow (when interval timer mode is selected)			(B)
		1	INTP0	Pin input edge detection	External	0006H	(C)
		2	INTP1			0008H	
		3	INTTM90	Remote control timer input rising edge detection	Internal	000AH	(B)
		4	INTTM91	Remote control timer input falling edge detection		000CH	
		5	INTTM92	Remote control timer overflow		000EH	
		6	INTKS	Key scan timing from VFD controller/driver		0010H	
		7	INTCSI1	Serial interface SIO1 transfer end		0012H	_
		8	INTCSI3	Serial interface SIO3 transfer end		0014H	_
		9	INTTM80	TM80 and CR80 match		0016H	_
		10	INTTM81	TM81 and CR81 match		0018H	
		11	INTAD	A/D conversion end		001AH	
	Software	_	BRK	BRK instruction execution	_	003EH	(D)


Notes 1. Default Priority is the priority order when more than one maskable interrupt request is generated simultaneously. 0 is the highest priority and 11 is the lowest.

2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 6-1.

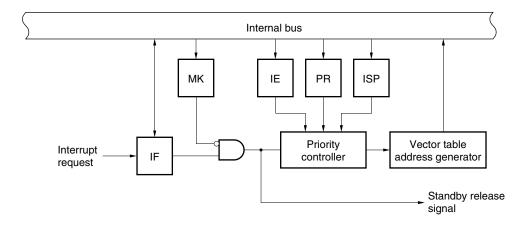
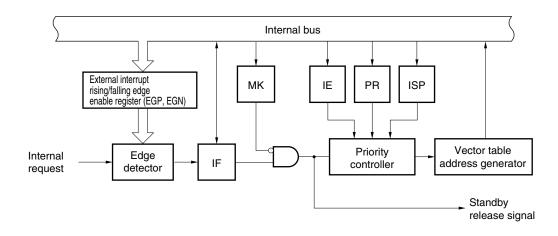
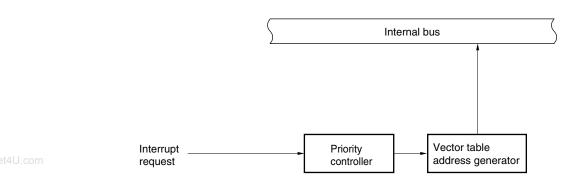

Remark Two watchdog timer interrupt sources (INTWDT) are available: a non-maskable interrupt and a maskable interrupt (internal), either of which can be selected.

Figure 6-1. Basic Interrupt Function Configuration (1/2)


(A) Internal non-maskable interrupt

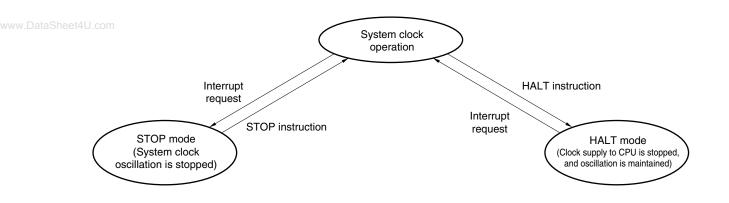
(B) Internal maskable interrupt



(C) External maskable interrupt (INTP0, INTP1)

Figure 6-1. Basic Interrupt Function Configuration (2/2)

(D) Software interrupt



7. STANDBY FUNCTION

The standby function is a function to reduce the current consumption. The following two types of standby functions are available.

- HALT mode: Halts the CPU operating clock and enables a reduction in the average current consumption by intermittent operation with normal operation.
- STOP mode: Halts the system clock oscillation. Halts all operations with the system clock and sets an ultralow power consumption state.

8. RESET FUNCTION

The following two types of resetting methods are available.

- External reset by the RESET input
- Internal reset by watchdog timer loop detection

* 9. MASK OPTION

The mask options for the μ PD780232 are shown in Table 9-1.

Pin Name	Mask Option
FIP 0 to FIP23, P30/FIP24 to P37/FIP31, P40/FIP32 to P47/FIP39	An on-chip pull-down resistor can be specified for VLOAD in 1-bit units.
P50/FIP40 to P57/FIP47, P60/FIP48 to P64/FIP52	An on-chip pull-down resistor can be specified for VLOAD or VSS0 in 1-bit units.

10. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

	2nd Operand										[HL+byte]			
	1st Operand	#byte	A	rNote	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+B] [HL+C]	\$addr16	1	Non
heet4U.con	A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR	XCH ADD ADDC SUB SUBC AND OR	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR	MOV XCH ADD ADDC SUB SUBC AND OR		ROR ROL RORC ROLC	
				XOR CMP		XOR CMP	XOR CMP			XOR CMP	XOR CMP			
	r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
	B, C											DBNZ		
	sfr	MOV	MOV											
	saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
	!addr16		MOV											
	PSW	MOV	MOV											PUSI POP
	[DE]		MOV											
	[HL]		MOV											ROR ROL4
	[HL+byte] [HL+B] [HL+C]		MOV											
	X													MULI
	С													DIVU

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVWNote						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	СҮ	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instruction/branch instructions

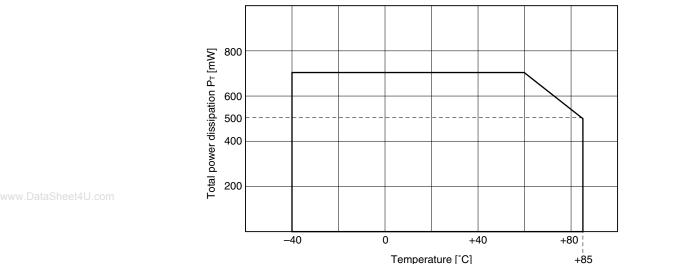
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

	2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
	Basic instruction	BR	CALL BR	CALLF	CALLT	BR BC BNC BZ BNZ
on	Compound instruction					BT BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

***** 11. ELECTRICAL SPECIFICATIONS


Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	C	onditions		Rating	Unit
Supply voltage	Vdd				-0.3 to +6.5	V
	VLOAD				V _{DD} - 45 to V _{DD} + 0.3	V
	AVDD				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1	P00 to P02, P20 to P27, 2	X1, X2, RESET		-0.3 to V _{DD} + 0.3	V
	VI2	P50 to P57, P60 to P64	P-ch open drain		V _{DD} - 45 to V _{DD} + 0.3	V
Output voltage	V ₀₁		1		-0.3 to V _{DD} + 0.3	V
U.com	V _{O2}				V _{DD} - 45 to V _{DD} + 0.3	V
Analog input voltage	VAN	ANI0 to ANI3	Analog input pir	IS	AVss to AVDD	V
Output current, high	Іон	Per pin for P00 to P02 an	d P20 to P27		-10	mA
		Total for P00 to P02 and	P20 to P27		-30	mA
		Per pin for FIP0 to FIP23, P50 to P57, and P60 to P	· · · · ·) to P47,	-30	mA
		Total for FIP0 to FIP23, P30 to	o P37, P40 to P47,	Peak value	-300	mA
		P50 to P57, and P60 to P	64	rms value	-120	mA
Output current, low	IOL Note 1	Per pin for P00 to P02 an	d P20 to P27	Peak value	10	mA
				rms value	5	mA
		Total for P00 to P02 and	P20 to P27	Peak value	20	mA
				rms value	10	mA
Total power	P⊤Note 2	$T_{A} = -40$ to $+60^{\circ}C$			700	mW
dissipation		T _A = +60 to +85°C			500	mW
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-40 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Notes 1. The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Notes 2. The allowable total power dissipation differs depending on the temperature (see the following figure).

How to calculate total power dissipation

The power consumption of the μ PD780232 can be divided to the following three types. The sum of the three power consumption types should be less than the total power dissipation PT (80% or less of ratings is recommended).

- <1> CPU power consumption: Calculate VDD (MAX.) × IDD (MAX.).
- <2> Output pin power consumption: Power consumption when maximum current flows to VFD output pins.
- <3> Pull-down resistor power consumption: Power consumption by the pull-down resistors incorporated in the VFD output pins by a mask option.

The following shows how to calculate total power consumption for the example in Figure 11-1.

ExampleAssume the following conditions:
 $V_{DD} = 5.5 V, 5.0 MHz$ oscillation
 Supply current (IDD) = 21.0 mA
 VFD output:11 grids × 10 segments (blanking width = 1/16)
 The maximum current at the grid pin is 15 mA.
 The maximum current at the segment pin is 5 mA.
 At the key scan timing, the VFD output pin is OFF.
 VFD output voltage: Grids
 Vod = VDD - 2 V (voltage drop of 2 V)
 Segments
 Vod = VDD - 0.5 V (voltage drop of 0.5 V)Fluorescent display control voltage (VLOAD) = -35 V
 Mask option pull-down resistor = 35 kΩ

By placing the above conditions in calculations <1> to <3>, the total dissipation can be calculated.

<1> CPU power consumption: $5.5 \text{ V} \times 21.0 \text{ mA} = 115.5 \text{ mW}$

<2> Output pin power consumption:

Grid

Segme

$$(V_{DD} - V_{OD}) \times \frac{\text{Total current value of each grid}}{\text{Number of grids} + 1} \times (1 - \text{Blanking width})$$

 $= 2 V \times \frac{15 \text{ mA} \times 11 \text{ grids}}{11 \text{ grids} + 1} \times (1 - \frac{1}{16}) = 25.8 \text{ mW}$

vww.DataSheet4U.com

= 0.5 V
$$\times \frac{5 \text{ mA} \times 31 \text{ dots}}{11 \text{ grids} + 1} \times (1 - \frac{1}{16}) = 6.1 \text{ mW}$$

<3> Pull-down resistor power consumption:

=

Grid
$$\frac{(V_{OD} - V_{LOAD})^2}{Pull-down resistor value} \times \frac{Number of grids}{Number of grids + 1} \times (1 - Blanking width)$$
$$= \frac{(5.5 V - 2 V - (-35 V))^2}{35 k\Omega} \times \frac{11 \text{ grids}}{11 \text{ grids} + 1} \times (1 - \frac{1}{16}) = 36.4 \text{ mW}$$
Segment
$$\frac{(V_{OD} - V_{LOAD})^2}{Pull-down resistor value} \times \frac{Number of illuminated dots}{Number of grids + 1} \times (1 - Blanking width)$$
$$= \frac{(5.5 V - 0.5 V - (-35 V))^2}{35 k\Omega} \times \frac{31 \text{ dots}}{11 \text{ grids} + 1} \times (1 - \frac{1}{16}) = 110.7 \text{ mW}$$

Total power consumption = <1> + <2> + <3> = 115.5 + 25.8 + 6.1 + 36.4 + 110.7 = 294.5 mW

In this example, the total power consumption does not exceed the rating of the allowable total power dissipation, so there is no problem in the power consumption.

However, when the total power consumption exceeds the rating of the total power dissipation, it is necessary to lower the power consumption. To reduce the power consumption, reduce the number of pull-down resistors.

											p	,	aana	-	,									
	FA02H,	FA01H, I	FA00H	0 0	0 0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	то
	FA09H,	FA08H, I	FA07H	0 0	0 0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	T1
	FA10H,	FA0FH, F	A0EH	0 0	0 0	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0	T2
	FA17H,	FA16H, I	FA15H	0 0	0 0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	ТЗ
	FA1EH,	, FA1DH, F	A1CH	0 0) 1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	T4
	FA25H,	FA24H, I	FA23H	0 0	0 0	1	1	0	1	1	0	1	0	0	0	0	0	1	0	0	0	0	0	Т5
	FA2CH,	, FA2BH, F	A2AH	0 0	0 0	1	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	Т6
	FA33H,	FA32H, I	FA31H	1 (0 0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	T7
	FA3AH,	, FA39H, I	FA38H	0 1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	Т8
ataSheet4U.com	FA41H,	FA40H, F	FA3FH	0 0	0 0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	Т9
	FA48H,	FA47H, I	FA46H	0 1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	T10
				•	, ,		ļ	ţ	ļ					Ļ				ļ		ļ			ļ	
		(VFD out		20 1	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		FIP0 to F	IP20)	li	i	n la	f	e	d	c	b	Ja												
		[
											Γ													
																			Г					
		s	UN	MON		TUE		WE	Đ		тн	U		FRI		S	٩T							
	AM	i -	—,			i •		ī	-		Ē	-				1	-			- I		—		fgb
	PM	j -	-i	i—i		<u>j</u> •	i	1	ī		1	-	ļį	—¦		1	i		i -	ī		_		e d c
	C	. -	1	2		3		4			5	_		6		-	7		8	-		9		h 10
		,		2		0		4	r		0	'		0			,		0			3		10

Figure 11-1. Display Example of 10 Segments-11 Digits

Display data memory

	Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Ceramic resonator		Oscillation frequency (fx) ^{Note 1}	V _{DD} = Oscillation voltage range	1		5	MHz
			Oscillation stabilization time ^{Note 2}	After V _{DD} reaches the minimum value of oscillation voltage range			4	ms
	Crystal resonator		Oscillation frequency (fx) ^{Note 1}		1		5	MHz
Sheet4	-U.com		Oscillation stabilization time ^{Note 2}				10	ms
	External clock	X1 X2	X1 input frequency (fx) ^{Note 1}		1		5	MHz
		μPD74HCU04	X1 input high-/low-level width (txH/txL)		85		450	ns

System Clock Oscillator Characteristics ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 4.5$ to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 2. Time required to stabilize oscillation after reset or STOP release.

Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Recommended Oscillator Constant

System Clock: Ceramic Resonator ($T_A = -40$ to $+85^{\circ}C$)

Manufacturer	Part Number	Frequency	Recommended	Circuit Constant	Oscillation V	oltage Range
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)
Murata Mfg.	CSB 1000J	1.00	150	150	4.5	5.5
Co., Ltd.	CSA2.00MG040	2.00	100	100		
	CST2.00MG040		On-chip	On-chip		
	CSA3.58MG	3.58	30	30		
	CST3.58MGW		On-chip	On-chip		
	CSTS0358MG06					
	CSA4.19MG	4.19	30	30		
	CST4.19MGW		On-chip	On-chip		
	CSTS0419MG06					
	CSA5.00MG	5.00	30	30		
	CST5.00MGW		On-chip	On-chip		
	CSTS0500MG03					

Caution

on The oscillator constant and oscillation voltage range indicate conditions of stable oscillation. Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

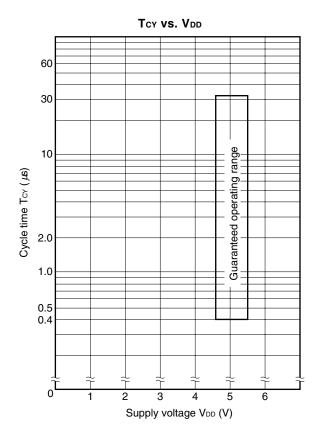
Capacitance (T_A = 25° C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz	P00 to P02, P20 to P27			15	pF
		Unmeasured pins returned to 0 V	P50 to P57, P60 to P64			35	pF
Output capacitance	Соит	f = 1 MHz	P00 to P02, P20 to P27			15	pF
		Unmeasured pins returned to 0 V	P30 to P37, P40 to P47,			35	pF
			P50 to P57, P60 to P64,				
			FIP0 to FIP23				
I/O	Сю	f = 1 MHz	P00 to P02, P20 to P27			15	pF
capacitance		Unmeasured pins returned to 0 V	P50 to P57, P60 to P64			35	pF

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P02, P20 to P27, RESET		0.7Vdd		Vdd	V
	VIH2	P50 to P57, P60 to P64		0.7Vdd		Vdd	V
	Vінз	X1, X2		VDD-0.5		Vdd	V
Input voltage, low	VIL1	P00 to P02, P20 to P27, RESET		0		0.2VDD	V
	VIL2	X1, X2		0		0.4	V
Output voltage, high	Vон	Іон = −1 mA		VDD - 1.0		Vdd	V
		Іон = -100 μА		VDD-0.5		Vdd	V
Output voltage, low	Vol	P00 to P02, P20 to P27	IoL = 400 μA			0.5	V
Input leakage	Ішні	P00 to P02, P20 to P27, P50 to P57, P60 to P64, RESET	$V_{\text{IN}} = V_{\text{DD}}$			3	μA
current, high	ILIH2	X1, X2				20	μA
Input leakage		P00 to P02, P20 to P27, RESET	$V_{IN} = 0 V$			-3	μA
current, low	ILIL2	X1, X2				-20	μA
	Іцнз	P50 to P57, P60 to P64	VIN = VLOAD = VDD - 40 V			-10	μA
Output leakage current, high	Ігон	P00 to P02, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P64	Vout = Vdd			3	μA
Output leakage	ILOL1	P00 to P02, P20 to P27	Vout = 0 V			-3	μA
current, low	ILOL2	P30 to P37, P40 to P47, P50 to P57, P60 to P64	Vout = Vload = Vdd - 40 V			-10	μA
VFD output current	Гор	FIP0 to FIP19	$V_{OD} = V_{DD} - 2 V$			-15	mA
		FIP20 to FIP52				-5	mA
Software pull-up resistance	R1	P00 to P02, P20 to P27	$V_{IN} = 0 V$	10	30	100	kΩ
On-chip mask option pull-down resistance (Vsso connection)	R₂	P50 to P57, P60 to P64		15	35	90	kΩ
On-chip mask option pull-down resistance (VLOAD connection)	R₃	FIP0 to FIP52	Vod – Vload = 40 V	30	60	135	kΩ
Power supply current ^{Note}	IDD1	5 MHz crystal oscillation operation mode	PCC = 00H		7	14	mA
	IDD2	5 MHz crystal oscillation HALT mode			1.5	4.5	mA
	IDD3	STOP mode			1	30	μA

Note Refers to the current flowing to the VDD pin. The current flowing to the on-chip pull-up and pull-down resistors is not included.


Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.2. PCC: Processor clock control register

AC Characteristics

(1) Basic operation (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction execution time)	Тсү	Operated with main system clock	0.4		32	μs
Interrupt request input high-/low-level width	tinth tintl	INTPO, INTP1	10			μs
RESET low-level width	trsl		10			μs

ww.DataSheet4U.com

(2) Timer/counter (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
TI input high-/	tтıн		2/Fcount + 0.2 ^{Note}			μs
low-level width	t⊤ı∟					

Note FCOUNT is the frequency of the count clock selected by TM9 (the frequency can be selected from $fx/2^6$, $fx/2^7$, $fx/2^8$, and $fx/2^9$).

- (3) Serial interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 4.5 to 5.5 V)
 - (a) Serial interface (3-wire serial mode)

(i) 3-wire serial mode (SCK1: Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy1		800			ns
SCK1 high-/low-level width	tкнı tк∟ı		tксү1/2 — 50			ns
SI1 setup time (to SCK1↑)	tsikı		100			ns
SI1 hold time (from SCK1↑)	tksi1		400			ns
Delay time from $\overline{\text{SCK1}}$ to SO1 output	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SCK1 and SO1 output lines.

(ii) 3-wire serial mode (SCK1: External clock input)

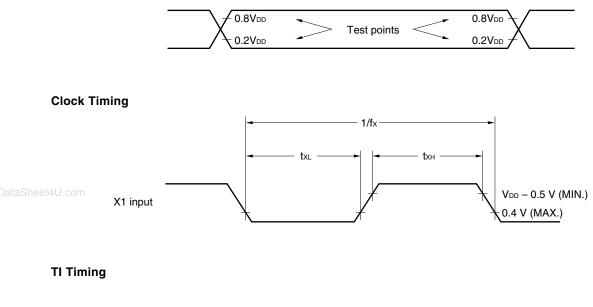
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү2		800			ns
SCK1 high-/low- level width	tкн₂ tк∟2		400			ns
SI1 setup time (to SCK1↑)	tsik2		100			ns
SI1 hold time (from SCK1↑)	tksi2		400			ns
Delay time from SCK1↓ to SO1 output	tkso2	C = 100 pF ^{Note}			300	ns
SCK1 rise/fall time	tr2 tF2				1	μs

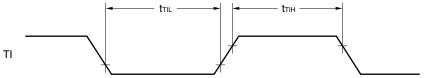
Note C is the load capacitance of the SO1 output line.

(b) Serial interface (2-wire serial mode)

(i) 2-wire serial mode (SCK3...Internal clock output)

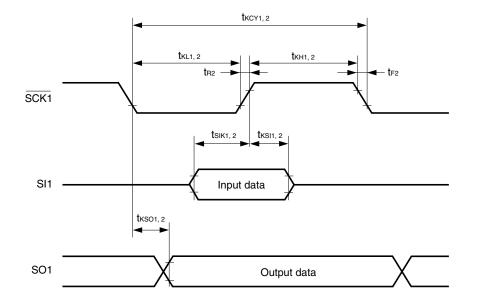
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3 cycle time	tксүз		800			ns
SCK3 high-/low-level	tкнз		tксүз/2 – 50			ns
width	t ĸ∟з					
Delay time from $\overline{\text{SCK3}}\downarrow$	tкsoз	C = 100 pF ^{Note}			300	ns
to SO3 output						

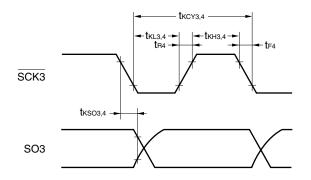

Note C is the load capacitance of the $\overline{\text{SCK3}}$ and SO3 output lines.


(ii) 2-wire serial mode (SCK3...External clock input)

U.com	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	SCK3 cycle time	tkcy4		800			ns
	SCK3 high-/low-	t кн4		400			ns
	level width	tĸl4					
	Delay time from $\overline{SCK3}\downarrow$ to SO3 output	tkso4	C = 100 pF ^{Note}			300	ns
	SCK3 rise/fall time	tR4				1	μs
		t⊧4					

Note C is the load capacitance of the SO3 output line.


AC Timing Test Points (Excluding X1 Input)


Serial Transfer Timing

3-wire serial mode:

ww.DataSheet4U.com

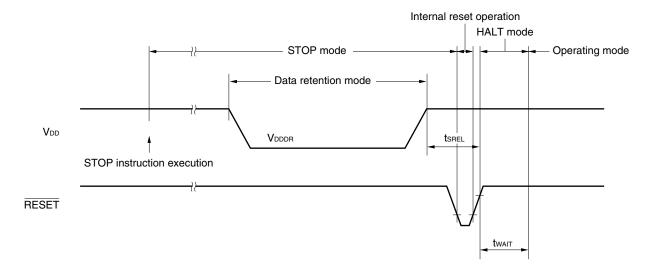
2-wire serial mode:

A/D Converter Characteristics (T_A = -40 to $+85^{\circ}$ C, AV_{DD} = V_{DD} = 4.0 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

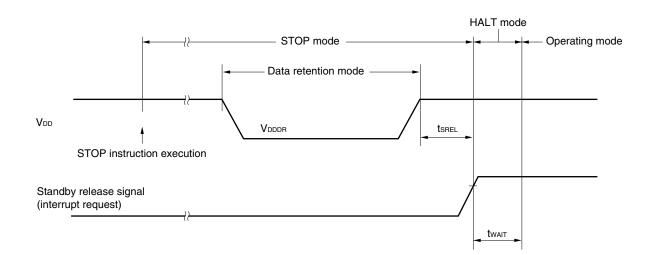
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					8	bit
Overall error ^{Note 1}					±1.0	%
Conversion timeNote 2	t CONV		14			μs
Analog input voltage	VIAN		AVss		AVDD	V

Notes 1. Quantization error (±1/2LSB) is not included. This parameter is indicated as the ratio to the full-scale value.

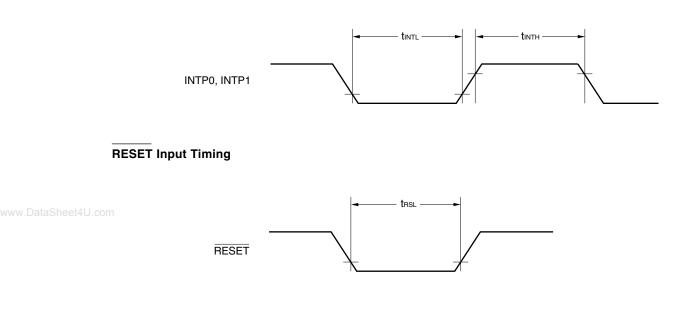
2. Set the A/D conversion time to 14 μs or more.


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		2.0		5.5	V
Data retention supply current	Idddr			0.1	30	μA
Release signal set time	t SREL		0			μs
Oscillation stabili-	twait	Release by RESET		2 ¹⁷ /fx		ms
zation wait time		Release by interrupt request		Note		ms

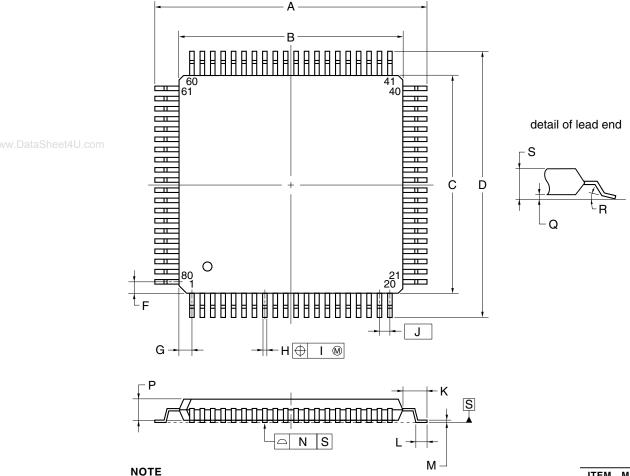
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)


Note 2¹²/fx, 2¹⁴/fx to 2¹⁷/fx can be selected by bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).

DataSheet4U.com


Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)



Interrupt Request Input Timing

12. PACKAGE DRAWING

80-PIN PLASTIC QFP (14x14)

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
I	0.13
J	0.65 (T.P.)
К	1.60±0.20
L	0.80±0.20
М	$0.17\substack{+0.03 \\ -0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	3°+7° -3°
S	1.70 MAX.
	P80GC-65-8BT-1

* 13. RECOMMENDED SOLDERING CONDITIONS

The μ PD780232 should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 13-1. Surface Mounting Type Soldering Conditions

μ PD780232GC- \times ××-8BT: 80-pin plastic QFP (14 × 14)

	Soldering	Soldering Conditions	Recommended Method Condition Symbol
om	Infrared reflow	rared reflow Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	
	VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
	Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
	Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	—

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780232. Also refer to **(6) Notes on using development tools**.

(1) Software Package

SP78K0	Software package common to 78K/0 Series
--------	---

(2) Language Processing Software

RA78K0	Assembler package common to 78K/0 Series
СС78К0	C compiler package common to 78K/0 Series
t4UDF780233	Device file for μ PD780232 Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(3) Flash Memory Writing Tools

*	Flashpro III (FL-PR3, PG-FP3)	Dedicated flash programmer for on-chip flash memory microcontrollers
		Adapter for flash memory writing. Used by connecting to Flashpro III. • For 80-pin plastic QFP (GC-8BT type)

(4) Debugging Tools

• When in-circuit emulator IE-78K0-NS(-A) is used

	IE-78K0-NS(-A)	In-circuit emulator common to 78K/0 Series
	IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
*	IE-78K0-NS-PA	Performance board to enhance/extend the functions of the IE-78K0-NS
	IE-70000-98-IF-C	Adapter required when PC-9800 series (except notebook type) is used as host machine (C bus supported)
*	IE-70000-CD-IF-A	PC card and interface cable required when notebook-type PC is used as host machine (PCMCIA socket supported)
	IE-70000-PC-IF-C	Adapter required when IBM PC/AT [™] compatible is used as host machine (ISA bus supported)
*	IE-70000-PCI-IF-A	Adapter required when PC incorporating PCI bus is used as host machine
*	IE-780233-NS-EM4,	Emulation board and I/O board to emulate the μ PD780232 Subseries
	IE-78K0-NS-P01	
	NP-80GC	Emulation probe for 80-pin plastic QFP (GC-8BT type)
*	NP-80GC-TQ	
*	NP-H80GC-TQ	
	EV-9200GC-80	Conversion socket to connect the NP-80GC and the target system board on which 80-pin plastic QFP (GC-8BT type) can be mounted
*	TGC-080SBP	Conversion adapter to connect the NP-80GC-TQ or NP-H80GC-TQ and the target system board on which 80-pin plastic QFP (GC-8BT type) can be mounted
	ID78K0-NS	Integrated debugger for IE-78K0-NS
	SM78K0	System simulator common to 78K/0 Series
	DF780233	Device file for μ PD780232 Subseries

• When in-circuit emulator IE-78001-R-A is used

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Adapter required when PC-9800 series (except notebook type) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Adapter required when IBM PC/AT compatible is used as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter required when PC incorporating PCI bus is used as host machine
IE-70000-R-SV3	Interface adapter and cable required when EWS is used as host machine
IE-780233-NS-EM4, IE-78K0-NS-P01	Emulation board and I/O board to emulate the μ PD780232 Subseries
IE-78K0-R-EX1	Emulation probe conversion board required when using IE-780232-NS-EM1 on IE-78001-R-A
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EV-9200GC-80	Conversion socket to connect the EP-78230GC-R and the target system board on which 80-pin plastic QFP (GC-8BT type) can be mounted
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF780233	Device file for μ PD780232 Subseries
	IE-70000-98-IF-C IE-70000-PC-IF-C IE-70000-PCI-IF-A IE-70000-R-SV3 IE-780233-NS-EM4, IE-78K0-NS-P01 IE-78K0-R-EX1 EP-78230GC-R EV-9200GC-80 ID78K0 SM78K0

(5) Real-Time OSs

RX78K0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

★ (6) Notes on using development tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780233.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and DF780233.
- The FL-PR3, FA-80GC, NP-80GC, NP-80GC-TQ, and NP-H80GC-TQ are products of Naito Densei Machida Mfg. Co., Ltd (+81-45-475-4191).
- The TGK-080SBP is a product made by TOKYO ELETECH CORPORATION. For further information, contact: Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL +81-3-3820-7112)

Osaka Electronics Department (TEL +81-6-6244-6672)

- For third-party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machines and OS suitable for each software are as follows:

ataSheet4U.con

Host Machine	PC	EWS
[OS]	PC-9800 series [Japanese Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT compatibles	SPARCstation™ [SunOS™, Solaris™]
Software	[Japanese/English Windows]	
RA78K0	√Note	\checkmark
CC78K0	√Note	\checkmark
ID78K0-NS	\checkmark	_
ID78K0	\checkmark	_
SM78K0	\checkmark	_
RX78K0	√Note	\checkmark
MX78K0	√Note	

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μPD780232 Subseries User's Manual	U13364E
μPD780232 Data Sheet	This manual
μPD78F0233 Data Sheet	U13322E
78K/0 Series Instructions User's Manual	U12326E
78K/0, 78K/0S Series Flash Memory Write Application Note	U14458E

 \star

 \star

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
PG-FP3 Flash Memory Programmer		U13502E
IE-78K0-NS In-Circuit Emulator		U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E	
IE-78001-R-A In-Circuit Emulator		U14142E
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared	
IE-780233-NS-EM4 Emulation Board		U14666E
EP-78230 Emulation Probe		EEU-1515
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later Windows Based	Operation	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Parts User Open Interface Specifications	U15006E
ID78K0-NS Integrated Debugger Ver. 2.00 or Later Windows Based	Operation	U14379E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver. 2.20 or Later Windows Based	Operation	U14910E
ID78K0 Integrated Debugger Windows Based	Guide	U11649E
	Reference	U11539E

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.
78K/0 Series Real-time OS	Fundamentals	U11537E
	Installation	U11536E
78K/0 Series OS MX78K0	Fundamentals	U12257E

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE - Products & Package - (CD-ROM)	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

- NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- www.DataSheet4U.com• Availability of related technical literature
 - Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
 - Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK

Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899

NEC Electronics (France) S.A. Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A. Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.2

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

 The information in this document is current as of February, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

"NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
 "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).