32-bit Proprietary Microcontroller
 CMOS

FR60Lite MB91260B Series

MB91263B/MB91264B/MB91F264B

■ DESCRIPTION

The MB91260B series is a 32-bit RISC microcontroller designed by Fujitsu for embedded control applications which require high-speed processing.
The CPU is used the FR family and the compatibility of FR60Lite.

■ FEATURES

- FR60Lite CPU
- 32-bit RISC, load/store architecture with a five-stage pipeline
- Maximum operating frequency: 33 MHz (oscillation frequency 4.192 MHz , oscillation frequency 8 -multiplier (PLL clock multiplication method)
- 16-bit fixed length instructions (basic instructions)
- Execution speed of instructions : 1 instruction per cycle
- Memory-to-memory transfer, bit handling, barrel shift instructions, etc. : Instructions suitable for embedded applications
- Function entry/exit instructions, multiple-register load/store instructions : Instructions adapted for C-language
(Continued)
- PACKAGES
100-pin plastic QFP
(FPT-100P-M06)
(FPT-100P-M05)

MB91260B Series

(Continued)

- Register interlock function : Facilitates coding in assembler.
- Built-in multiplier with instruction-level support
- 32 bit multiplication with sign : 5 cycles
- 16 bit multiplication with sign : 3 cycles
- Interrupt (PC, PS save) : 6 cycles, 16 priority levels
- Harvard architecture allowing program access and data access to be executed simultaneously
- FR family instruction compatible
- Internal peripheral functions
- Capacity of internal ROM and ROM type MASK ROM : 128 Kbytes (MB91263B)/256 Kbytes (MB91264B)
FLASH ROM : 256 Kbytes (MB91F264B)
- Capacity of internal RAM : 8 Kbytes
- A/D converter (sequential comparison type)
- Resolution : 10 bits : 2 channels $\times 2$ units, 8 channels $\times 1$ unit
- Conversion time : $1.2 \mu \mathrm{~s}$ (Minimum conversion time system clock at 33 MHz) $1.35 \mu \mathrm{~s}$ (Minimum conversion time system clock at 20 MHz)
- External interrupt input: 10 channels
- Bit search module (for REALOS)

Function for searching the MSB in each word for the first 1-to-0 inverted bit position

- UART (Full-duplex double buffer) : 3 channels

Selectable parity On/Off
Asynchronous (start-stop synchronized) or clock-synchronous communications selectable Internal timer for dedicated baud rate (U-Timer) on each channel External clock can be used as transfer clock
Error detection function for parity, frame and overrun errors

- 8/16-bit PPG timer : 16 channels (at 8 -bit) / 8 channels (at 16-bit)
- 16 -bit reload timer : 3 channels (with cascade mode, without output of reload timer 0)
- 16-bit free-run timer : 1 channel
- 16-bit PWC timer : 2 channels
- Input capture : 4 channels (interface with free-run timer)
- Output compare : 6 channels (interface with free-run timer)
- Waveform generator

Various waveforms which are generated by using output compare, 16-bit PPG timer 0 and 16-bit dead timer

- MAC

RAM : instruction RAM 256×16-bit
XRAM
64×16-bit
YRAM
64×16-bit
Execution of 1 cycle product addition (16-bit $\times 16$-bit +40 bits)
Operation results are extracted rounded from 40 to 16 bits

- DMAC (DMA Controller) : 5 channels

Operation of transfer and activation by internal peripheral interrupts and software

- Watchdog timer
- Low Power Consumption Mode Sleep/stop function
- Other
- Package : QFP-100, LQFP-100
- Technology : CMOS $0.35 \mu \mathrm{~m}$
- Power supply : 1-power supply [Vcc = 4.0 V to 5.5 V]

MB91260B Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-100-M06)

MB91260B Series

(Continued)

(FPT-100-M05)

MB91260B Series

- PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
1	99	SIN1	D	UART1 data input pin. Since this input is used as required when UART1 is performing input operation, the port output must remain off unless used intentionally.
		P23		General-purpose I/O port. This port is enabled when UART1 data input is disabled.
2	100	SOT1	D	UART1 data output pin. This function is enabled when UART1 data output is enabled.
		P24		General-purpose I/O port. This function is enabled when UART1 data output is disabled.
3	1	SCK1	D	UART1 clock input/output pin. This function is enabled when UART1 clock output is enabled.
		P25		General-purpose I/O port. This function is enabled when UART1 clock output is disabled.
4	2	INT6	E	External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		P26		General-purpose I/O port. This function is enabled when external interrupt input is disabled.
5	3	INT7	E	External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		P27		General-purpose I/O port. This function is enabled when external interrupt input is disabled.
6	4	P50	C	General-purpose I/O port. This port is enabled in single-chip mode.
7	5	TIN0	C	Reload timer 0 external trigger input pin. Since this input is used as required when trigger input is enabled, the port output must remain off unless used intentionally.
		P51		General-purpose I/O port. This function is enabled when reload timer 0 external clock input is disabled.
8	6	TIN1	C	Reload timer 1 external trigger input pin. Since this input is used as required when trigger input is enabled, the port output must remain off unless used intentionally.
		P52		General-purpose I/O port. This function is enabled when reload timer 1 external clock input is disabled.
9	7	TIN2	C	Reload timer 2 external trigger input pin. Since this input is used as required when trigger input is enabled, the port output must remain off unless used intentionally.
		P53		General-purpose I/O port. This function is enabled when reload timer 2 external clock input is disabled.

(Continued)

MB91260B Series

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
10	8	INT0	E	External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		P54		General-purpose I/O port. This function is enabled when external interrupt input is disabled.
11	9	INT1	E	External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		P55		General-purpose I/O port. This function is enabled when external interrupt input is disabled.
12	10	INT2	E	External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		P56		General-purpose I/O port. This function is enabled when external interrupt input is disabled.
13	11	INT3	E	External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		P57		General-purpose I/O port. This function is enabled when external interrupt input is disabled.
14	12	CKI	E	Free-running timer external clock input pin. Since this input is used as required when selected as the external clock input for the free-running timer, the port output must remain off unless used intentionally.
		INT4		External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		PG0		General-purpose I/O port. This port is enabled when free-running timer external clock input and external interrupt input are disabled.
15	13	PPG0	E	PPG timer 0 output pin. This function is enabled when PPG timer 0 output is enabled.
		INT5		External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		PG1		General-purpose I/O port. This port is enabled when PPG timer 0 output and external interrupt input are disabled.
16	14	PG2	C	General-purpose I/O port.
20	18	SIN2	D	UART2 data input pin. Since this input is used as required when UART2 is performing input operation, the port output must remain off unless used intentionally.
		PG3		General-purpose I/O port. This port is enabled when UART2 data input is disabled.

(Continued)

MB91260B Series

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
21	19	SOT2	D	UART2 data output pin. This function is enabled when UART2 data output is enabled.
		PG4		General-purpose I/O port. This port is enabled when UART2 data output is disabled.
22	20	SCK2	D	UART2 clock input/output pin. This function is enabled when UART2 clock output is enabled.
		PG5		General-purpose I/O port. This function is enabled when UART2 clock output is disabled.
23	21	P40	C	General-purpose I/O port.
24	22	P41	C	General-purpose I/O port.
25	23	P42	C	General-purpose I/O port.
26	24	P43	C	General-purpose I/O port.
27	25	P44	C	General-purpose I/O port.
28	26	P45	C	General-purpose I/O port.
29	27	P46	C	General-purpose I/O port.
30	28	P47	C	General-purpose I/O port.
31	29	AN11	G	A/D converter analog input pin. This function is enabled when the AICR2 register specifies analog input.
		PE1		General-purpose I/O port. This function is enabled when analog input is disabled.
32	30	AN10	G	A/D converter analog input pin. This function is enabled when the AICR2 register specifies analog input.
		PE0		General-purpose I/O port. This function is enabled when analog input is disabled.
38	36	AN9	G	A/D converter analog input pin. This function is enabled when the AICR1 register specifies analog input.
		PD1		General-purpose I/O port. This function is enabled when analog input is disabled.
39	37	AN8	G	A/D converter analog input pin. This function is enabled when the AICR1 register specifies analog input.
		PD0		General-purpose I/O port. This function is enabled when analog input is disabled.
41	39	AN7	G	A/D converter analog input pin. This function is enabled when the AICR0 register specifies analog input.
		PC7		General-purpose I/O port. This function is enabled when analog input is disabled.

(Continued)

MB91260B Series

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
42	40	AN6	G	A/D converter analog input pin. This function is enabled when the AICR0 register specifies analog input.
		PC6		General-purpose I/O port. This function is enabled when analog input is disabled.
43	41	AN5	G	A/D converter analog input pin. This function is enabled when the AICR0 register specifies analog input.
		PC5		General-purpose I/O port. This function is enabled when analog input is disabled.
44	42	AN4	G	A/D converter analog input pin. This function is enabled when the AICR0 register specifies analog input.
		PC4		General-purpose I/O port. This function is enabled when analog input is disabled.
45	43	AN3	G	A/D converter analog input pin. This function is enabled when the AICR0 register specifies analog input.
		PC3		General-purpose I/O port. This function is enabled when analog input is disabled.
46	44	AN2	G	A/D converter analog input pin. This function is enabled when the AICR0 register specifies analog input.
		PC2		General-purpose I/O port. This function is enabled when analog input is disabled.
47	45	AN1	G	A/D converter analog input pin. This function is enabled when the AICRO register specifies analog input.
		PC1		General-purpose I/O port. This function is enabled when analog input is disabled.
48	46	ANO	G	A/D converter analog input pin. This function is enabled when the AICR0 register specifies analog input.
		PC0		General-purpose I/O port. This function is enabled when analog input is disabled.
51	49	RTO0	J	Multifunction timer waveform generator output pin. This pin outputs a specified waveform to the waveform generator. The waveform output is enabled when waveform generator output is enabled.
		P30		General-purpose I/O port. This function is enabled when waveform generator output is disabled.
52	50	RTO1	J	Multifunction timer waveform generator output pin. This pin outputs a specified waveform to the waveform generator. The waveform output is enabled when waveform generator output is enabled.
		P31		General-purpose I/O port. This function is enabled when waveform generator output is disabled.

(Continued)

MB91260B Series

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
53	51	RTO2	J	Multifunction timer waveform generator output pin. This pin outputs a specified waveform to the waveform generator. The waveform output is enabled when waveform generator output is enabled.
		P32		General-purpose I/O port. This function is enabled when waveform generator output is disabled.
54	52	RTO3	J	Multifunction timer waveform generator output pin. This pin outputs a specified waveform to the waveform generator. The waveform output is enabled when waveform generator output is enabled.
		P33		General-purpose I/O port. This function is enabled when waveform generator output is disabled.
55	53	RTO4	J	Multifunction timer waveform generator output pin. This pin outputs a specified waveform to the waveform generator. The waveform output is enabled when waveform generator output is enabled.
		P34		General-purpose I/O port. This function is enabled when waveform generator output is disabled.
56	54	RTO5	J	Multifunction timer waveform generator output pin. This pin outputs a specified waveform to the waveform generator. The waveform output is enabled when waveform generator output is enabled.
		P35		General-purpose I/O port. This function is enabled when waveform generator output is disabled.
57	55	IC0	D	Input capture 0 trigger input pin. The trigger can be input when the input capture trigger input and input port are set. Since this input is used as required when selected as the input capture input, the port output must remain off unless used intentionally.
		P36		General-purpose I/O port. This function is enabled when input capture trigger input is disabled.
58	56	IC1	D	Input capture 1 trigger input pin. The trigger can be input when the input capture trigger input and input port are set. Since this input is used as required when selected as the input capture input, the port output must remain off unless used intentionally.
		P37		General-purpose I/O port. This function is enabled when input capture trigger input is disabled.
59	57	IC2	D	Input capture 2 trigger input pin. The trigger can be input when the input capture trigger input and input port are set. Since this input is used as required when selected as the input capture input, the port output must remain off unless used intentionally.
		P60		General-purpose I/O port. This function is enabled when input capture trigger input is disabled.

(Continued)

MB91260B Series

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
60	58	IC3	D	Input capture 3 trigger input pin. The trigger can be input when the input capture trigger input and input port are set. Since this input is used as required when selected as the input capture input, the port output must remain off unless used intentionally.
		P61		General-purpose I/O port. This function is enabled when input capture trigger input is disabled.
61	59	INT8	E	External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		P62		General-purpose I/O port. This function is enabled when external interrupt input is disabled.
62	60	INT9	E	External interrupt input pin. Since this input is used as required when the corresponding external interrupt is enabled, the port output must remain off unless used intentionally.
		P63		General-purpose I/O port. This function is enabled when external interrupt input is disabled.
63	61	TOT1	C	Reload timer 1 output pin. This function is enabled when reload timer output is enabled.
		P70		General-purpose I/O port. This function is enabled when reload timer output is disabled.
64	62	TOT2	C	Reload timer 2 output pin. This function is enabled when reload timer output is enabled.
		P71		General-purpose I/O port. This function is enabled when reload timer output is disabled.
65	63	DTTI	D	Input signal for controlling multifunction timer waveform generator output pins RTO0 to RTO5. This function is enabled when DTTI input is enabled.
		P72		General-purpose I/O port. This function is enabled when DTTI input is disabled.
66	64	PWIO	D	PWC timer 0 pulse width counter input pin. This function is enabled when PWC timer 0 pulse width counter input is enabled.
		P73		General-purpose I/O port. This function is enabled when PWC timer 0 pulse width counter input is disabled.
69	67	PWI1	D	PWC timer 1 pulse width counter input pin. This function is enabled when PWC timer 1 pulse width counter input is enabled.
		P74		General-purpose I/O port. This function is enabled when PWC timer 1 pulse width counter input is disabled.
70	68	ADTG0	C	A/D converter 0 external trigger input pin. Since this input is used as required when selected as the A/D converter trigger source, the port output must remain off unless used intentionally.
		P75		General-purpose I/O port. This function is enabled when A/D converter 0 external trigger input is disabled.

(Continued)

MB91260B Series

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
71	69	ADTG1	C	A/D converter 1 external trigger input pin. Since this input is used as required when selected as the A/D converter trigger source, the port output must remain off unless used intentionally.
		P76		General-purpose I/O port. This function is enabled when A/D converter 1 external trigger input is disabled.
72	70	ADTG2	C	A/D converter 2 external trigger input pin. Since this input is used as required when selected as the A/D converter trigger source, the port output must remain off unless used intentionally.
		P77		General-purpose I/O port. This function is enabled when A/D converter 2 external trigger input is disabled.
73	71	$\overline{\mathrm{NMI}}$	H	NMI (Non Maskable Interrupt) input pin.
74	72	MD2	K	Mode pin 2. The setting of this pin determines the basic operation mode. Connect the pin to Vcc or Vss.
75	73	MD1	K	Mode pin 1. The setting of this pin determines the basic operation mode. Connect the pin to Vcc or Vss.
76	74	MD0	K	Mode pin 0 . The setting of this pin determines the basic operation mode. Connect the pin to Vcc or Vss.
77	75	INIT	I	External reset input pin.
78	76	PPG1	C	PPG timer 1 output pin. This function is enabled when PPG timer 1 output is enabled.
		P00		General-purpose I/O port. This function is enabled when PPG timer 1 output is disabled.
79	77	PPG2	C	PPG timer 2 output pin. This function is enabled when PPG timer 2 output is enabled.
		P01		General-purpose I/O port. This function is enabled when PPG timer 2 output is disabled.
80	78	PPG3	C	PPG timer 3 output pin. This function is enabled when PPG timer 3 output is enabled.
		P02		General-purpose I/O port. This function is enabled when PPG timer 3 output is disabled.
81	79	PPG4	C	PPG timer 4 output pin. This function is enabled when PPG timer 4 output is enabled.
		P03		General-purpose I/O port. This function is enabled when PPG timer 4 output is disabled.
82	80	PPG5	C	PPG timer 5 output pin. This function is enabled when PPG timer 5 output is enabled.
		P04		General-purpose I/O port. This function is enabled when PPG timer 5 output is disabled.

(Continued)

MB91260B Series

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
83	81	PPG6	C	PPG timer 6 output pin. This function is enabled when PPG timer 6 output is enabled.
		P05		General-purpose I/O port. This function is enabled when PPG timer 6 output is disabled.
84	82	PPG7	C	PPG timer 7 output pin. This function is enabled when PPG timer 7 output is enabled.
		P06		General-purpose I/O port. This function is enabled when PPG timer 7 output is disabled.
85	83	PPG8	C	PPG timer 8 output pin. This function is enabled when PPG timer 8 output is enabled.
		P07		General-purpose I/O port. This function is enabled when PPG timer 8 output is disabled.
86	84	PPG9	C	PPG timer 9 output pin. This function is enabled when PPG timer 9 output is enabled.
		P10		General-purpose I/O port. This function is enabled when PPG timer 9 output is disabled.
87	85	PPG10	C	PPG timer 10 output pin. This function is enabled when PPG timer 10 output is enabled.
		P11		General-purpose I/O port. This function is enabled when PPG timer 10 output is disabled.
88	86	PPG11	C	PPG timer 11 output pin. This function is enabled when PPG timer 11 output is enabled.
		P12		General-purpose I/O port. This function is enabled when PPG timer 11 output is disabled.
89	87	PPG12	C	PPG timer 12 output pin. This function is enabled when PPG timer 12 output is enabled.
		P13		General-purpose I/O port. This function is enabled when PPG timer 12 output is disabled.
90	88	PPG13	C	PPG timer 13 output pin. This function is enabled when PPG timer 13 output is enabled.
		P14		General-purpose I/O port. This function is enabled when PPG timer 13 output is disabled.
91	89	PPG14	C	PPG timer 14 output pin. This function is enabled when PPG timer 14 output is enabled.
		P15		General-purpose I/O port. This function is enabled when PPG timer 14 output is disabled.
94	92	X1	A	Clock (oscillation) output pin.
95	93	X0	A	Clock (oscillation) input pin.

(Continued)

MB91260B Series

(Continued)

Pin no.		Pin name	Circuit type	Description
QFP	LQFP			
96	94	PPG15	C	PPG timer 15 output pin. This function is enabled when PPG timer 15 output is enabled.
		P16		General-purpose I/O port. This function is enabled when PPG timer 15 output is disabled.
97	95	P17	C	General-purpose I/O port.
98	96	SIN0	D	UARTO data input pin. Since this input is used as required when UARTO is performing input operation, the port output must remain off unless used intentionally.
		P20		General-purpose I/O port. This port is enabled when UARTO data input is disabled.
99	97	SOT0	D	UARTO data output pin. This function is enabled when UARTO data output is enabled.
		P21		General-purpose I/O port. This port is enabled when UARTO data output is disabled.
100	98	SCK0	D	UARTO clock input/output pin. This function is enabled when UART0 clock output is enabled.
		P22		General-purpose I/O port. This function is enabled when UARTO clock output is disabled.

- Power supply and GND pins

Pin no.		Pin name	
QFP	LQFP		
$18,50,68,93$	$16,48,66,91$	Vss	GND pins. Use all of these pins at equal potential.
$17,49,67,92$	$15,47,65,90$	Vcc	Power-supply pins. Use all of these pins at equal potential.
35	33	AVcc	Analog power-supply pin for A/D converter
33	31	AVRH2	Analog reference power-supply pin for A/D converter 2
36	34	AVRH1	Analog reference power-supply pin for A/D converter 1
40	38	AVRH0	Analog reference power-supply pin for A/D converter 0
37	35	AVss	Analog GND pin for A/D converter
19	17	C	Capacitor coupling pin for internal regulator
34	32	ACC	Analog capacitor coupling pin

MB91260B Series

I/O CIRCUIT TYPE

Type	Circuit type	Remarks
A		- Oscillation circuit - Oscillation feedback resistance : approx. $1 \mathrm{M} \Omega$
C		- CMOS level output - CMOS level input. - With standby control - With Pull-up control - loL $=4 \mathrm{~mA}$
D		- CMOS level output - CMOS level hysteresis input. - With standby control - With Pull-up control - $\mathrm{loL}=4 \mathrm{~mA}$

(Continued)

MB91260B Series

Type	Circuit type	Remarks
E		- CMOS level output - CMOS level hysteresis input. - Without standby control - With Pull-up control - $\mathrm{loL}=4 \mathrm{~mA}$
G		- Analog/CMOS level input/output pin - CMOS level output - CMOS level input. (attached with standby control) - Analog input (Analog input is enabled when AICR register's corresponding bit is set to "1".) - lot $=4 \mathrm{~mA}$
H		- CMOS level hysteresis input. - Without standby control

(Continued)

MB91260B Series

(Continued)

Type	Circuit type	Remarks
1		- CMOS level hysteresis input. - With pull-up resistor - Without standby control
J		- CMOS level output - CMOS level hysteresis input. - With standby control - $\mathrm{loL}=12 \mathrm{~mA}$
K		- CMOS level input. - Without standby control

MB91260B Series

■ HANDLING DEVICES

Preventing Latch-up

Latch-up may occur in a CMOS IC if a voltage greater than $\mathrm{V}_{\text {cc }}$ or less than $\mathrm{V}_{\text {ss }}$ is applied to an input or output pin or if an above-rating voltage is applied between V_{cc} and V_{ss}.
A latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the absolute maximum rating.

Treatment of Unused Pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example, using a pullup or pull-down resistor.

About Power Supply Pins

In products with multiple Vcc or Vss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between V_{cc} and $\mathrm{V}_{\text {ss }}$ near this device.

About Crystal Oscillator Circuit

Noise near the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and $\mathrm{X1}$ A pins may cause the device to malfunction. Design the printed circuit board so that $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and X 1 A the crystal oscillator (or ceramic oscillator) , and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended to design the PC board artwork with the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and X 1 A pins surrounded by ground plane because stable operation can be expected with such a layout.
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

About Mode Pins (MDO to MD2)

These pins should be connected directly to Vcc or Vss.
To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and V_{cc} or V_{ss} is as short as possible and the connection impedance is low.

Operation at Start-up

Be sure to execute setting initialized reset (INIT) with INIT pin immediately after start-up.
Also, in order to provide the oscillation stabilization wait time for the oscillation circuit immediately after start-up, hold the "L" level input to the INIT pin for the required stabilization wait time. (For INIT via the INIT pin, the oscillation stabilization wait time setting is initialized to the minimum value).

About Oscillation Input at Power On

When turning the power on, maintain clock input until the device is released from the oscillation stabilization wait state.

MB91260B Series

Caution operation during PLL clock mode

Even if the oscillator comes off or the clock input stops with the PLL clock selected for this device, the device may continue to operate at the free-run frequency of the PLL's internal self-oscillating oscillator circuit.
Performance of this operation, however, cannot be guaranteed.

External clock

When external clock is selected, the opposite phase clock to X 0 pin must be supplied to X 1 pin simultaneously. If the STOP mode (oscillation stop mode) is used simultaneously, the X1 pin is stopped with the "H" output. So, when STOP mode is specified, approximately $1 \mathrm{k} \Omega$ of resistance should be added externally to avoid the conflict of output.

The following figure shows using an external clock.

Using an external clock

C pin

A bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ should be connected the C pin for built-in regulator.

ACC pin

A capacitor should be inserted between the ACC pin and the AVcc pin as this product has built-in regulator for A/D converter.

MB91260B Series

Clock Control Block

Input the "L" signal to the INIT pin to assure the clock oscillation stabilization wait time.

Switch Shared Port Function

To switch between the use as a port and the use as a dedicated pin, use the port function register (PFR).

Low Power Consumption Mode

To enter the standby mode, use the synchronous standby mode (set with the SYNCS bit as bit 8 in the TBCR : timebase counter control register) and be sure to use the following sequence
(LDI \#value_of_standby, RO) : Value_of standby is write data to STCR.
(LDI \#_STCR, R12) : _STCR is address (481 H) of STCR.
STB R0, @R12 : Writing to standby control register (STCR)
LDUB @R12, R0 : STCR read for synchronous standby
LDUB @R12, R0 : Dummy re-read of STCR
NOP : NOP $\times 5$ for arrangement of timing
NOP
NOP
NOP
NOP
In addition, please set I flag, ILM, and ICR to diverge to the interruption handler that is the return factor after the standby returns.
-Please do not do the following when the monitor debugger is used.

- Break point setting for above instruction lines
- Step execution for above instruction lines

Notes on the PS register

As the PS register is processed by some instructions in advance, exception handling below may cause the interrupt handling routine to break when the debugger is used or the display contents of flags in the PS register to be updated.
As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case.

- The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS instruction is (a) acceptance of a user interrupt, (b) single-stepped, or (c) breaks in response to a data event or emulator menu :

1) The D0 and D1 flags are updated in advance.
2) An EIT handling routine (user interrupt or emulator) is executed.
3) Upon returning from the EIT, the DIVOU/DIVOS instruction is executed, and the D0 and D1 flags are updated to the same values as in 1).

- The following operations are performed when the ORCCR/STILM/MOVRi and PS instructions are executed to allow the interrupt.

MB91260B Series

1) The PS register is updated in advance.
2) An EIT handling routine (user interrupt) is executed.
3) Upon returning from the EIT, the above instructions are executed, and the PS register is updated to the same value as in 1).

Watchdog Timer

The watchdog timer built in this model monitors a program that it defers a reset within a certain period of time. The watchdog timer resets the CPU if the program runs out of controls, preventing the reset defer function from being executed. Once the function of the watchdog timer is enabled, therefore, the watchdog timer keeps on operating programs until it resets the CPU.
As an exception, the watchdog timer defers a reset automatically under the condition in which the CPU stops program execution.
For those conditions to which this exception applies, see the function description of watchdog timer.

MB91260B Series

NOTE ON DEBUGGER

- Step execution of RETI command

If an interrupt occurs frequently during step execution, the corresponding interrupt handling routine is executed repeatedly after step execution.
This will prevent the main routine and low-interrupt-level programs from being executed.
Do not execute step of RETI instruction for escape.
Disable the corresponding interrupt and execute debugger when the corresponding interrupt handling routine no longer needs debugging.

- Operand break

Do not apply a data event break to access to the area containing the address of a system stack pointer.

- Execution in an unused area of FLASH memory

Accidentally executing an instruction in an unused area of FLASH memory (with data placed at OXFFFFH) prevents breaks from being accepted.
To prevent this, the code event address mask function of the debugger should be used to cause a break when accessing an instruction in an unused area.

- Power-on debugging

All of the following three conditions must be satisfied when the power supply is turned off by power-on debugging.
(1) The time for the user power to fall from 0.9 Vcc to 0.5 Vcc is $25 \mu \mathrm{~s}$ or longer.

Note : In a dual-power system, VCC indicates the external I/O power supply voltage.
(2) CPU operating frequency must be higher than 1 MHz .
(3) During execution of user program

- Interrupt handler for NMI request (tool)

Add the following program to the interrupt handler to prevent the device from malfunctioning in case the factor flag to be set only in response to a break request from the ICE is set, for example, by an adverse effect of noise to the DSU pin while the ICE is not connected. Enable to use the ICE while adding this program.
Additional location
Next interrupt handler

Interrupt source	$:$ NMI request (tool)
Interrupt number	$: \# 13$ (decimal) ,0Dн (hexa decimal)
Offset	$: 3 \mathrm{C} 8 \mathrm{H}$
Address TBR is default	$: 000$ FFFC8

Additional program
STM (R0, R1)
LDI \#B0OH, RO; : BOOH is the address of DSU break factor register.
LDI \#0, R1
STB R1, @R0 : Clear the break factor register.
LDM (R0, R1)
RETI

MB91260B Series

BLOCK DIAGRAM

MB91260B Series

MEMORY SPACE

1. Memory space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) available to the CPU by linear access.

- Direct Addressing Areas

The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.

The size of directly addressable areas depends on the data size to be being accessed as follows.
\rightarrow Byte data access $: 000$ to 0FFн
\rightarrow Half word data access : 000 to 1 FFH
\rightarrow Word data access : 000 H to $3 \mathrm{FF}_{\mathrm{H}}$

2. Memory Map

MB91F264B/MB91264B			MB91263B		
Single chip mode			Single chip mode		
0000 0000	I/O	Direct addressing area	00000000 H	I/O	Direct addressing area
0000 0400	I/O	Refer to "■ I/O MAP".	0000 0400н	I/O	Refer to "■ I/O MAP".
00010000 н	Access disallowed	--	0001 0000H 0003 E000H	Access disallowed	----
0003 Е000н	Internal RAM 8 Kbytes			Internal RAM 8 Kbytes	
	Access disallowed		0004 0000н	Access disallowed	
000C 0000H	Internal RAM 256 Kbytes	----	O00E 0000 ${ }^{\text {H }}$	Internal RAM 128 Kbytes	
0010 0000н	Access disallowed		0010 0000н	Access disallowed	
FFFF FFFFH		FFFF FFFFF			

MB91260B Series

MODE SETTINGS

The FR family uses mode pins (MD2 to MD0) and a mode data to set the operation mode.

- Mode Pins

The MD2 to MD0 pins specify how the mode vector fetch and reset vector fetch is performed.
Setting is prohibited other than that shown in the following table.

Mode Pins			Mode name	Reset vector access area	Remarks
MD2	MD1	MD0			
0	0	0	Internal ROM mode vector	Internal	
0	0	1	External ROM mode vector	External	Not supported by this model.

- Mode data

Data written to the internal mode register (MODR) by a mode vector fetch is called mode data.
After an operation mode has been set in the mode register, the device operates in the operation mode.
The mode data is set by all reset source. User programs cannot set data to the mode register.
Details of mode data description
\square
Bit31 to bit24 are all reserved bits.
Be sure to set this bit to "00000111".
Operation is not guaranteed when any value other than " 00000111 " is set.
Note: Mode data set in the mode vector must be placed as byte data at 0x000FFFF8 H . Use the highest byte from bit31 to bit24 for placement as the FR family uses the big endian for byte endian.

Incorrect	0x000FFFF8H	bit 31	2423	1615	87	0
		XXXXXXXX	XXXXXXXX	XXXXXXXX	Mode Data	
Correct	0x000FFFF8 ${ }^{\text {H }}$	Mode Data	XXXXXXXX	XXXXXXXX	XXXXXXXX	
	0x000FFFFCH	Reset Vector				

MB91260B Series

I/O MAP

[How to read the table]

Note : Initial values of register bits are represented as follows :
" 1 ": Initial Value " 1 "
" 0 " : Initial Value " 0 "
" X " : Initial Value " undefined"
" - " : No physical register at this location
Access is barred with an undefined data access attribute.

MB91260B Series

Address	Register				Block
	+ 0	+ 1	+ 2	+ 3	
000000н	PDRO [R/W] B XXXXXXXX	PDR1 [R/W] B XXXXXXXX	PDR2 [R/W] B XXXXXXXX	PDR3 [R/W] B XXXXXXXX	Port data register
000004н	PDR4 [R/W] B XXXXXXXX	PDR5 [R/W] B XXXXXXXX	$\underset{\substack{---X X X X}}{\text { PDR }[R / W] B}$	PDR7 [R/W] B XXXXXXXX	
000008н	-				
00000CH	PDRC [R/W] B XXXXXXXX	$\begin{aligned} & \hline \text { PDRD }[\mathrm{R} / \mathrm{W}] \mathrm{B} \\ & \hline-\mathrm{XX} \end{aligned}$	$\begin{aligned} & \hline \text { PDRE }[\text { [R/W] B } \\ & \hline-\mathrm{xX} \end{aligned}$	-	
000010н	PDRG [R/W] B --XXXXXX	-	-	-	
$\begin{gathered} 000014 \mathrm{H} \\ \text { to } \\ 00003 \mathrm{C}_{\mathrm{H}} \end{gathered}$	-				Reserved
000040н	EIRRO $[R / W] B, H, W$ 00000000	ENIRO $[R / W] B, H, W$ 00000000	ELVRO [R/W] B, H, W 0000000000000000		External interrupt (INT0 to INT7)
000044	DICR [R/W] B, H, W	$\begin{gathered} \text { HRCL [R/W, R] } \\ \text { B, H, W } \\ 0--11111 \end{gathered}$	-	-	Delay interrupt/ Hold request
000048	TMRLR0 [W] H, W XXXXXXXX XXXXXXXX		TMRO [R] H, W XXXXXXXX XXXXXXXX		Reload timer 0
00004CH	-		TMCSRO [R/W, R] B, H, W ---00000 00000000		
000050н	TMRLR1 [W] H, W XXXXXXXX XXXXXXXX		TMR1 [R] H, W XXXXXXXX XXXXXXXX		Reload timer 1
000054н	-		TMCSR1 [R/W, R] B, H, W ---00000 00000000		
000058H	TMRLR2 [W] H, W XXXXXXXX XXXXXXXX		TMR2 [R] H, W XXXXXXXX XXXXXXXX		Reload timer 2
00005CH	-		TMCSR2 [R/W, R] B, H, W ---00000 00000000		
000060н	SSR0 [R/W, R] B, H, W 00001000	$\begin{gathered} \text { SIDRO[R]/SODRO[W] } \\ \text { B,H,W W } \\ \text { XXXXXXX } \end{gathered}$	$\left.\right\|_{00000100} ^{\text {SCRO }[R / W], H, W}$	SMRO [R/W, W] B, H, W $00--0-0-$	UART0
000064н	UTIM0 [R] H / UTIMRO [W] H 0000000000000000		DRCLO [W] B	$\begin{gathered} \hline \text { UTIMCO }[\mathrm{R} / \mathrm{W}] \text { B } \\ 0-00001 \end{gathered}$	U-TIMER 0
000068H	SSR1 [R/W, R] B, H, W 00001000	$\begin{gathered} \hline \text { SIDR1, SODR1[R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\left.\right\|_{00000100} ^{\text {SCR1 }[R / W], H, W} \mid$	SMR1 [R/W] B, H, W $00--0-0-$	UART1
00006CH	UTIM1 [R]H/ U 00000000	$\begin{aligned} & \text { JTIMR1 [W] H } \\ & 00000000 \end{aligned}$	DRCL1 [W] B	$\begin{gathered} \hline \text { UTIMC1 }[R / W] \text { B } \\ 0--00001 \end{gathered}$	U-TIMER 1
000070н	$\left\lvert\, \begin{gathered} \text { SSR2 [R/W, R] B, H, W } \\ 00001000 \end{gathered}\right.$	$\begin{gathered} \hline \text { SIDR2, SODR2[R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\left.\right\|_{00000100} ^{\text {SCR2 }[R / W] \text { B, } H, W}$	SMR2 [R/W] B, H, W $00--0-0-$	UART2
000074	UTIM2 [R] H/ U 00000000	$\begin{aligned} & \text { UTIMR2 [W] H } \\ & 00000000 \\ & \hline \end{aligned}$	$\underset{\text { DRCL2 [------ }}{ }$	UTIMC2 $0--00001$	U-TIMER 2

(Continued)

MB91260B Series

Address	Register				Block
	+ 0	+1	$+2$	+ 3	
000078н	$\begin{gathered} \text { ADCH0 [R/W] B, H, W } \\ \text { XX000000 } \end{gathered}$	ADMD0 [R/W] B, H, W 00001111	$\begin{gathered} \text { ADCD01 [R] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { ADCD00 [R] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	A/D converter 0/ AICR0
00007Сн	$\begin{gathered} \text { ADCS0 [R/W, W] B, H, W } \\ 00000 \times 00 \end{gathered}$	-	$\begin{array}{\|c\|} \hline \text { AICRO [R/W] B, H, W } \\ 00000000 \end{array}$	-	
000080н	$\begin{gathered} \text { ADCH }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ \text { XXXXOXX0 } \end{gathered}$	ADMD1 [R/W] B, H, W 00001111	ADCD11 [R] B, H, W XXXXXXXX	ADCD10 [R] B, H, W XXXXXXXX	A/D converter 1/ AICR1
000084н	$\begin{gathered} \text { ADCS1 [R/W, W] B, H, W } \\ 00000 \times 00 \end{gathered}$	-	$\begin{gathered} \text { AICR1 [R/W] B, H, W } \\ -----00 \end{gathered}$	-	
000088н	$\begin{gathered} \text { ADCH2 [R/W] B, H, W } \\ \text { XXXXOXX0 } \end{gathered}$	ADMD2 [R/W] B, H, W 00001111	$\begin{gathered} \text { ADCD21 [R] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { ADCD20 [R] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	A/D converter 2/ AICR2
00008Сн	$\begin{gathered} \text { ADCS2 [R/W, W] B, H, W } \\ 00000 \times 00 \end{gathered}$		$\begin{array}{\|c\|} \hline \text { AICR2 [R/W] B, H, W } \\ -----00 \end{array}$	-	
000090н	OCCPBHO, OCCPBLO[W]/ OCCPHO, OCCPLO[R] H, W 0000000000000000		OCCPBH1, OCCPBL1[W]/ OCCPH1, OCCPL1 [R] H, W 0000000000000000		16-bit output compare
000094H	OCCPBH2, OCCPBL2[W]/ OCCPH2, OCCPL2 [R] H, W 0000000000000000		ОССРBH3, OCCPBL3[W]/ OCCPH3, OCCPL3 [R] H, W 0000000000000000		
000098н	OCCPBH4, OCCPBL4[W]/ OCCPH4, OCCPL4 [R] H, W 0000000000000000		OCCPBH5, OCCPBL5[W]/ OCCPH5, OCCPL5 [R] H, W 0000000000000000		
00009Сн	$\begin{gathered} \text { OCSH1 [R/W] B, H, W } \\ \text { X1100000 } \end{gathered}$	$\begin{gathered} \text { OCSLO }[R / W] \text { B, H, W } \\ 00001100 \end{gathered}$	$\begin{gathered} \text { OCSH3 [R/W] } \\ \text { B, H, W } \\ \text { X1100000 } \end{gathered}$	$\begin{gathered} \text { OCSL2 [R/W] } \\ \text { B, H, W } \\ 00001100 \end{gathered}$	
0000АОн	$\begin{gathered} \text { OCSH5 [R/W] B, H, W } \\ \text { X1100000 } \end{gathered}$	$\begin{gathered} \text { OCSL4 [R/W] B, H, W } \\ 00001100 \end{gathered}$	OCMOD [R/W] B, H, W XX000000	-	
0000A4H	CPCLRBH, CPCLRBL[W]/ CPCLRH, CPCLRL[R] H, W 1111111111111111		TCDTH, TCDTL [R/W] H, W0000000000000000		```16-bit free-run timer```
0000A8н	$\begin{gathered} \text { TCCSH [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { TCCSL [R/W] B, H, W } \\ 01000000 \end{gathered}$	-	ADTRGC [R/W] B, H, W XXXX0000	
0000ACH	IPCPHO, IPCPLO [R] H, W XXXXXXXX XXXXXXXX		IPCPH1, IPCPL1 [R] H, W XXXXXXXX XXXXXXX		16-bit input capture
0000В0н	IPCPH2, IPCPL2 [R] H, W XXXXXXXX XXXXXXXX		IPCPH3, IPCPL3 [R] H, W XXXXXXXX XXXXXXX		
0000B4H	$\begin{gathered} \text { PICSH01 [W] B, H, W } \\ 000000-- \end{gathered}$	$\begin{gathered} \text { PICSL01 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ICSH23 [R] B, H, W } \\ \text { XXXXXX00 } \end{gathered}$	$\begin{gathered} \hline \text { ICSL23 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$	
0000B8н	EIRR1 $\underset{-----00}{[R / W] ~ B, ~ H, ~ W ~}$	ENIR1 $\underset{-----00}{[R / W] ~ B, ~ H, ~ W ~}$	ELVR1 [R/-----	$\begin{aligned} & \text { W] B, H, W } \\ & --0000 \end{aligned}$	External interrupt (INT8, INT9)

(Continued)

MB91260B Series

(Continued)

MB91260B Series

Address	Register				Block
	+ 0	+1	+ 2	+ 3	
000124H	$\begin{gathered} \text { PRLH12 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PRLL12 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	PRLH13 [R/W] B, H, W XXXXXXXX	$\begin{gathered} \text { PRLL13 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	PPG0 to PPG15
000128H	$\begin{gathered} \text { PRLH14 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLL14 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH15 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { PRLL15 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	
00012CH	$\begin{gathered} \text { PPGC12 [R/W] B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC13 [R/W] B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { PPGC14 [R/W] B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	$\begin{gathered} \hline \text { PPGC15 [R/W] B, H, W } \\ 0000000 \mathrm{X} \end{gathered}$	
000130н	TRG [R/W] B, H, W 0000000000000000		-	$\begin{gathered} \text { GATEC [R/W] B, H, W } \\ \text { XXXXXX00 } \end{gathered}$	
000134H	REVC [R/W] B, H, W 0000000000000000		-	-	
$\left\lvert\, \begin{gathered} 000138 \mathrm{H} \\ \text { to } \\ 0001 \text { FСн } \end{gathered}\right.$	-				Reserved
000200н	DMACA0 [R/W] B, H, W *100000000000000000000000000000000				DMAC
000204H	DMACBO [R/W] B, H, W00000000000000000000000000000000				
000208н	DMACA1 [R/W] B, H, W*100000000000000000000000000000000				
00020Сн	DMACB1 [R/W] B, H, W00000000000000000000000000000000				
000210н	DMACA2 [R/W] B, H, W *100000000000000000000000000000000				
000214H	DMACB2 [R/W] B, H, W00000000000000000000000000000000				
000218н	$\begin{gathered} \hline \text { DMACA3 [R/W] B, H, W *1 } \\ 00000000000000000000000000000000 \end{gathered}$				
00021 CH	DMACB3 [R/W] B, H, W00000000000000000000000000000000				
000220н	DMACA4 [R/W] B, H, W *100000000000000000000000000000000				
000224H	DMACB4 [R/W] B, H, W00000000000000000000000000000000				
$\begin{array}{\|l\|} \hline 000228 \mathrm{H} \\ \text { to } \\ 00023 \mathrm{CH}_{\mathrm{H}} \end{array}$	-				Reserved
000240н	DMACR [R/W] B 0XX00000 XXXXXXXX XXXXXXXX XXXXXXXX				DMAC
$\begin{aligned} & 000244 \mathrm{H} \\ & \text { to } \\ & 000398 \mathrm{H} \end{aligned}$	-				Reserved

(Continued)

MB91260B Series

Address	Register				Block
	+ 0	+ 1	+ 2	+ 3	
00039С ${ }^{\text {+ }}$	-	-	-	-	
0003A0н	$\begin{gathered} \hline \text { DSP-PC [R/W] } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { DSP-CSR [R/W, R, W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DSP-LY }[R / W] \\ X X X X X X X X X X X X X X \end{gathered}$		
0003A4н	$\begin{gathered} \text { DSP-OTO [R] } \\ \text { XXXXXXXXXXXXXXX } \end{gathered}$		$\begin{gathered} \text { DSP-OT1 [R] } \\ \text { XXXXXXXX XXXXXXXX } \end{gathered}$		
0003A8 ${ }^{\text {r }}$	DSP-OT2 [R] XXXXXXXX XXXXXXXX		DSP-OT3 [R] XXXXXXXX XXXXXXXX		MAC
0003ACH	-	-	-	-	
0003B0н	$\begin{gathered} \text { DSP-OT4 [R] } \\ \text { XXXXXXXXXXXXXXX } \end{gathered}$		DSP-OT5 [R] XXXXXXXX XXXXXXXX		
0003B4н	$\begin{gathered} \text { DSP-OT6 [R] } \\ \text { XXXXXXXXXXXXXXX } \end{gathered}$		$\begin{gathered} \text { DSP-OT7 [R] } \\ \text { XXXXXXXX XXXXXXXX } \end{gathered}$		
$\begin{gathered} 0003 \mathrm{B8H} \\ \text { to } \\ 0003 \mathrm{ECH} \end{gathered}$	-				Reserved
0003F0н	BSDO [W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003F4н	BSD1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				Bit search
0003F8н	BSDC [W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				Bit search
0003FCH	BSRR [R]$x X$				
000400н	$\begin{gathered} \text { DDR0 [R/W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DDR1 [R/W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DDR2 [R/W] B } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { DDR3 [R/W] B } \\ & 00000000 \end{aligned}$	Data direction register
000404н	$\begin{gathered} \hline \text { DDR4 [R/W] B } \\ 00000000 \end{gathered}$	DDR5 [R/W] B 00000000	$\begin{gathered} \hline \text { DDR6 [R/W] B } \\ ---0000 \end{gathered}$	$\begin{aligned} & \hline \text { DDR7 [R/W] B } \\ & 00000000 \end{aligned}$	
000408H	-	-	-	-	
00040CH	$\begin{gathered} \hline \text { DDRC [R/W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DDRD [R/W] B } \\ ----00 \end{gathered}$	$\underset{-----00}{ }$	-	
000410н	$\begin{gathered} \hline \text { DDRG [R/W] B } \\ --000000 \end{gathered}$	-	-	-	
$\begin{array}{\|c\|} \hline 000414 \mathrm{H} \\ \text { to } \\ 00041 \mathrm{CH}_{\mathrm{H}} \end{array}$	- -				Reserved
000420н	$\begin{gathered} \text { PFR0 [R/W] B } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PFR1 [R/W] B } \\ -0000000 \end{gathered}$	$\begin{aligned} & \text { PFR2 }[\mathrm{R} / \mathrm{W}] \text { B } \\ & --00-00- \end{aligned}$	-	Port function register
000424н	-	-	-	$\begin{gathered} \text { PFR7 [R/W] B } \\ ----00 \end{gathered}$	
000428н	-	-	-	-	
00042CH	-	-	-	-	
000430н	$\begin{gathered} \hline \text { PFRG [R/W] B } \\ --00--0- \end{gathered}$	-	-	-	

(Continued)

MB91260B Series

(Continued)

MB91260B Series

Address	Register				Block
	+ 0	+1	+2	+3	
000610н	$\begin{gathered} \hline \text { PCRG [R/W] B } \\ --000000 \end{gathered}$	-	-	-	Pull-up controller
$\begin{array}{\|c\|} \hline 000614 \text { н } \\ \text { to } \\ 000 \text { FFCH } \end{array}$					Reserved
001000н	DMASAO [R/W] W00000000000000000000000000000000				DMAC
001004H	DMADAO [R/W] W00000000000000000000000000000000				
001008н	DMASA1 [R/W] W00000000000000000000000000000000				
00100Сн	DMADA1 [R/W] W00000000000000000000000000000000				
001010н	DMASA2 [R/W] W00000000000000000000000000000000				
001014H	DMADA2 [R/W] W00000000000000000000000000000000				
001018н	DMASA3 [R/W] W00000000000000000000000000000000				
	DMADA3 [R/W] W0000000000000000000000000000000				
001020н	DMASA4 [R/W] W00000000000000000000000000000000				
001024	DMADA4 [R/W] W00000000000000000000000000000000				
$\begin{array}{\|c\|} \hline 001028 \mathrm{H} \\ \text { to } \\ 006 \mathrm{FF} \mathrm{C}_{\mathrm{H}} \end{array}$	-				Reserved
007000н	$\begin{gathered} \hline \text { FLCR [R/W] } \\ 0110 X 000 \end{gathered}$	-	-	-	FLASH
007004н	FLWC [R/W] 00000011*2	-	-	-	
007008н	-	-	-	-	
00700С ${ }_{\text {н }}$	-	-	-	-	
007010н	-	-	-	-	
$\begin{array}{\|c\|} \hline 007014 \text { н } \\ \text { to } \\ \text { 00BFFCH } \end{array}$	-				Reserved

(Continued)

MB91260B Series

(Continued)

Address	Register				Block
	+ 0	+1	+2	+ 3	
$\begin{array}{\|l\|} \hline 00 \mathrm{C} 00 \mathrm{O}_{\mathrm{H}} \\ \text { to } \\ 00 \mathrm{C} 07 \mathrm{C}_{\mathrm{H}} \end{array}$	X-RAM (coefficient RAM) [R/W]64×16 bits				MAC
$\begin{array}{\|c} \hline 00 \mathrm{C} 080_{\mathrm{H}} \\ \text { to } \\ 00 \mathrm{COFC} \end{array}$	Y-RAM (variable RAM) [R/W]64×16 bits				
$\begin{array}{\|c} \hline 00 \mathrm{C} 100 \mathrm{H} \\ \text { to } \\ 00 \mathrm{C} 2 \mathrm{FC} \end{array}$	I-RAM (instruction RAM) [R/W] 256×16 bits				
$\begin{aligned} & \text { 00C300н } \\ & \text { to } \\ & 00 F F F C_{H} \end{aligned}$	-				Reserved

*1: The lower 16 bits (DTC15 to DCT0) of DMACA0 to DMACA4 cannot be accessed in bytes.
*2 : The initial value of 1FLWC (7004н) is "00010011в" on EVA tool.
Writing "00000011b" on the evaluation model has no effect on its operation.
Notes : • Do not execute Read Modify Write instructions on registers having a write-only bit. - Data is undefined in reserved or (-) area.

MB91260B Series

INTERRUPT VECTOR

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	RN
	10	16				
Reset	0	00	-	3 FCH	000FFFFFCH	-
Mode vector	1	01	-	3F8н	000FFFFF8	-
System reserved	2	02	-	3F4H	000FFFFF4н	-
System reserved	3	03	-	3F0н	000FFFFFOH	-
System reserved	4	04	-	ЗЕСн	000FFFEEC	-
System reserved	5	05	-	3E8H	000FFFEE8H	-
System reserved	6	06	-	3E4 ${ }^{\text {¢ }}$	000FFFEE4н	-
Coprocessor absent trap	7	07	-	3E0н	000FFFFEOH	-
Coprocessor error trap	8	08	-	3DCH	000FFFDCH	-
INTE instruction	9	09	-	3D8н	000FFFFD8	-
Instruction break exception	10	0A	-	3D4н	000FFFD4 ${ }_{\text {н }}$	-
Operand break trap	11	OB	-	3D0н	000FFFFDO ${ }_{\text {н }}$	-
Step trace trap	12	OC	-	ЗССн	000FFFCCH	-
NMI request (tool)	13	OD	-	3C8H	000FFFFC8	-
Undefined instruction exception	14	OE	-	3C4H	000FFFCC4	-
NMI request	15	0F	15 (FH) fixed	3 COH	000FFFFCOH	-
External interrupt 0	16	10	ICR00	3BCH	000FFFBCH	6
External interrupt 1	17	11	ICR01	3B8н	000FFFFB8	7
External interrupt 2	18	12	ICR02	3B4	000FFFFB4н	-
External interrupt 3	19	13	ICR03	3B0н	000FFFFB0 ${ }_{\text {H }}$	-
External interrupt 4	20	14	ICR04	ЗАСн	000FFFACH	-
External interrupt 5	21	15	ICR05	ЗА8н	000FFFA8H	-
External interrupt 6	22	16	ICR06	3A4 ${ }^{\text {¢ }}$	000FFFFA4н	-
External interrupt 7	23	17	ICR07	3АО	000FFFAOH	-
Reload timer 0	24	18	ICR08	39С	000FFF99 ${ }_{\text {н }}$	8
Reload timer 1	25	19	ICR09	398н	000FFF98 ${ }_{\text {н }}$	9
Reload timer 2	26	1A	ICR10	394	000FFF94 ${ }_{\text {¢ }}$	10
UARTO(Reception completed)	27	1B	ICR11	390н	000FFF90н	0
UART0 (RX completed)	28	1C	ICR12	38 CH	000FFF88CH	3
DTTI	29	1D	ICR13	388 ${ }^{\text {¢ }}$	000FFF888	-
DMAC0 (end, error)	30	1E	ICR14	384 ${ }^{\text {H }}$	000FFF884	-
DMAC1 (end, error)	31	1F	ICR15	380н	000FFFF80н	-
DMAC2/3/4 (end, error)	32	20	ICR16	37 CH	000FFF7CH	-

(Continued)

MB91260B Series

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	RN
	10	16				
UART1(Reception completed)	33	21	ICR17	378	000FFFF78	1
UART1 (RX completed)	34	22	ICR18	374	000FFFF74	4
UART2 (Reception completed)	35	23	ICR19	370н	000FFF70н	2
UART2 (RX completed)	36	24	ICR20	$36 \mathrm{C}_{\text {н }}$	000FFF6CH	5
MAC	37	25	ICR21	368н	000FFF688	-
PPG0	38	26	ICR22	364	000FFF664	-
PPG1	39	27	ICR23	360н	000FFF66\%	-
PPG2/3	40	28	ICR24	35 CH	000FFF56 ${ }_{\text {H }}$	-
PPG4/5/6/7	41	29	ICR25	358H	000FFFF58н	-
PPG8/9/10/11/12/13/14/15	42	2A	ICR26	354	000FFF544	-
External interrupt 8/9	43	2B	ICR27	350н	000FFFF50н	-
Waveform0 (under flow)	44	2C	ICR28	$34 \mathrm{C}_{\mathrm{H}}$	000FFF4CH	-
Waveform1 (under flow)	45	2D	ICR29	348	000FFFF48	-
Waveform2 (under flow)	46	2E	ICR30	344 н	000FFFF44	-
Timebase timer overflow	47	2F	ICR31	340н	000FFFF40н	-
Free-run timer (Compare clear)	48	30	ICR32	33C	000FFF3CH	-
Free-run timer (zero detection)	49	31	ICR33	338	000FFF38н	-
A/D0	50	32	ICR34	334	000FFF34 ${ }_{\text {н }}$	-
A/D1	51	33	ICR35	330н	000FFFF30н	-
A/D2	52	34	ICR36	32 CH	000FFF2CH	-
PWC0 (measurement completed)	53	35	ICR37	328н	000FFF28н	-
PWC1 (measurement completed)	54	36	ICR38	324	000FFFF24	-
PWC0 (overflow)	55	37	ICR39	320н	000FFF20н	-
PWC1 (overflow)	56	38	ICR40	31 CH	000FFFF1CH	-
ICU0 (capture)	57	39	ICR41	318н	000FFFF18	-
ICU1 (capture)	58	3A	ICR42	314 H	000FFFF14	-
ICU2/3 (capture)	59	3B	ICR43	310н	000FFFF10н	-
OCU0/1 (match)	60	3C	ICR44	$30 \mathrm{C}_{\mathrm{H}}$	000FFFOCH	-
OCU2/3 (match)	61	3D	ICR45	308н	000FFF08н	-
OCU4/5 (match)	62	3E	ICR46	304 H	000FFFF04	-
Delay interrupt source bit	63	3F	ICR47	300н	000FFFF00н	-
System reserved (Used by REALOS)	64	40	-	2FCH	000FFEFCH	-
System reserved (Used by REALOS)	65	41	-	2F8H	000FFEF8\%	-

(Continued)

MB91260B Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	RN
	10	16				
System reserved	66	42	-	2F4	000FFEF4н	-
System reserved	67	43	-	2F0н	000FFEFFOH	-
System reserved	68	44	-	2ЕСн	000FFEECH	-
System reserved	69	45	-	2Е8н	000FFEE8н	-
System reserved	70	46	-	2E4	000FFEE4 ${ }_{\text {¢ }}$	-
System reserved	71	47	-	2Е0н	000FFEEOH	-
System reserved	72	48	-	2DCH	000FFEDCH	-
System reserved	73	49	-	2D8н	000FFED8н	-
System reserved	74	4A	-	2D4 ${ }^{\text {H }}$	000FFED4H	-
System reserved	75	4B	-	2D0н	000FFEDOH	-
System reserved	76	4C	-	2 CCH	000FFECCH	-
System reserved	77	4D	-	2С8 ${ }^{\text {¢ }}$	000FFEC8	-
System reserved	78	4E	-	2 C 4 H	000FFEC4H	-
System reserved	79	4F	-	2 COH	000FFECOH	-
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{gathered} 50 \\ \text { to } \\ \text { FF } \end{gathered}$	-	$\begin{gathered} \hline 2 \mathrm{BC}_{\mathrm{H}} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$	000FFEBC to 000 FFCO OH	-

MB91260B Series

- PIN STATUS IN EACH CPU STATE

Terms used as the status of pins mean as follows.

- Input enabled
- Indicates that the input function can be used.
- Input 0 fixed
- Indicates that the input level has been internally fixed to be 0 to prevent leakage when the input is released.
- Output Hi-Z
- Means the placing of a pin in a high impedance state by preventing the transistor for driving the pin from driving.
- Output is maintained.
- Indicates the output in the output state existing immediately before this mode is established.
- If the device enters this mode with an internal output peripheral operating or while serving as an output port, the output is performed by the internal peripheral or the port output is maintained, respectively.
- State existing immediately before is maintained.
- When the device serves for output or input immediately before entering this mode, the device maintains the output or is ready for the input, respectively.

MB91260B Series

- List of pin status (single chip mode)

Pin no.		Pin name	Function	At initializing		At sleep mode	At Stop mode	
QFP	LQFP			$\overline{\mathbf{I N T T}}=\mathbf{L}^{\text {*1 }}$	$\overline{\text { INIT }}=\mathbf{H}^{* 2}$		HIZ $=0$	HIZ = 1
1	99	P23	SIN1	Output $\mathrm{Hi}-\mathrm{Z} /$ Input disabled	$\begin{gathered} \text { Output Hi-Z/ } \\ \text { Input } \\ \text { enabled } \end{gathered}$	Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
2	100	P24	SOT1					
3	1	P25	SCK1					
4, 5	2, 3	P26, P27	INT6, INT7			Input enabled	Input enabled	Input enabled
6	4	P51	Port			Retention	Retention	
7 to 9	5 to 7	$\begin{aligned} & \text { P50, P52, } \\ & \text { P53 } \end{aligned}$	Ports/ TINO to TIN2			of the immediately prior state	of the immediately prior state	Output Hi-Z/ Input 0 fixed
10	8	P54	INTO			Input enabled	Input enabled	Input enabled
11	9	P55	INT1					
12	10	P56	INT2					
13	11	P57	INT3					
14	12	PGO	CKI/INT4					
15	13	PG1	PPG0/INT5					
16	14	PG2	Ports			Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
20	18	PG3	SIN2					
21	19	PG4	SOT2					
22	20	PG5	SCK2					
23 to 30	21 to 28	P40 to P47	Ports					
31, 32	29, 30	PE1, PE0	AN11, AN10					
38, 39	36, 37	PD1, PD0	AN9, AN8					
41 to 48	39 to 46	$\begin{aligned} & \text { PC7 to } \\ & \text { PC0 } \end{aligned}$	AN7 to ANO					
51 to 56	49 to 54	P30 to P35	$\begin{aligned} & \hline \text { RTO0 to } \\ & \text { RTO5 } \end{aligned}$					
57, 58	55, 56	P36, P37	IC0, IC1					
59, 60	57, 58	P60, P61	IC2, IC3					
61, 62	59, 60	P62, P63	INT8, INT9			Input enabled	Input enabled	Input enabled

(Continued)

MB91260B Series

(Continued)
P : Selection of general purpose port, F: Selection of specified function

Pin no.		Pin name	Function	At initializing		At sleep mode	At Stop mode	
QFP	LQFP			$\overline{\mathbf{I N I T}}=\mathbf{L}^{* 1}$	$\overline{\mathbf{I N T T}}=\mathbf{H}^{\star 2}$		$\mathrm{HIZ}=0$	HIZ $=1$
63, 64	61, 62	P70, P71	TOT1, TOT2	Output Hi-Z/ input disabled	Output Hi-Z/ input enabled	Retention of the immediately prior state	Retention of the immediately prior state	Output $\mathrm{Hi}-\mathrm{Z} /$ Input 0 fixed
65	63	P72	DTTI					
66	64	P73	PWIO					
69	67	P74	PWI1					
70	68	P75	ADTG0					
71	69	P76	ADTG1					
72	70	P77	ADTG2					
73	71	NMI	NMI	Input enabled				
78	76	P00	PPG1	Output Hi-Z/ input disabled	output $\mathrm{Hi}-\mathrm{Z} /$ input enabled	Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ input 0 fixed
79	77	P01	PPG2					
80	78	P02	PPG3					
81	79	P03	PPG4					
82	80	P04	PPG5					
83	81	P05	PPG6					
84	82	P06	PPG7					
85	83	P07	PPG8					
86	84	P10	PPG9					
87	85	P11	PPG10					
88	86	P12	PPG11					
89	87	P13	PPG12					
90	88	P14	PPG13					
91	89	P15	PPG14					
96	94	P16	PPG15					
97	95	P17	Ports					
98	96	P20	SIN0					
99	97	P21	SOT0					
100	98	P22	SCK0					

*1 : $\overline{\mathrm{NIT}}=\mathrm{L}$: Indicates the pin status with $\overline{\mathrm{NIT}}$ remaining at the " L " level.
*2 : $\overline{\mathrm{NIT}}=\mathrm{H}$: Indicates the pin status existing immediately after $\overline{\mathrm{NIT}}$ transition from "L" to " H " level.

MB91260B Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.5	Vss +6.0	V	
Analog power supply voltage*1	AVcc	Vss -0.5	Vss +6.0	V	*2
Analog reference voltage*1	AVRH	Vss -0.5	$\mathrm{V}_{\mathrm{ss}}+6.0$	V	*2
Input voltage*1	V_{1}	Vss -0.3	$\mathrm{Vcc}+0.3$	V	
Analog pin input voltage ${ }^{* 1}$	$V_{\text {IA }}$	Vss -0.3	$\mathrm{AVcc}+0.3$	V	
Output voltage*1	Vo	Vss -0.3	V cc +0.3	V	
"L" level maximum output current	lob	-	10	mA	*3
"L" level average output current	lolav	-	8	mA	* 4
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	*5
" H " level maximum output current	Іон	-	- 10	mA	*3
"H" level average output current	lohav	-	-4	mA	* 4
" H " level total maximum output current	Σ Іон	-	- 50	mA	
" H " level total average output current	Σ Iohav	-	-20	mA	*5
Power consumption	Po	-	600	mW	FLASH product
			600		MASK product $\mathrm{Ta} \leq+85^{\circ} \mathrm{C}$
			360		MASK product $\mathrm{Ta} \leq+105^{\circ} \mathrm{C}$ *6
Operating temperature	Ta	-40	+ 105	${ }^{\circ} \mathrm{C}$	MASK product (at single chip operating)
		-40	+ 85	${ }^{\circ} \mathrm{C}$	FLASH product (at single chip operating)
Storage temperature	Tstg	-55	125	${ }^{\circ} \mathrm{C}$	

${ }^{* 1}$: This parameter is based on $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}_{\mathrm{ss}}=0.0 \mathrm{~V}$.
*2 : Be careful not to exceed V cc +0.3 V , for example, when the power is turned on. Be careful not to let AV cc exceed V Vc , for example, when the power is turned on.
*3: The maximum output current is the peak value for a single pin.
*4: The average output current is the average current for a single pin over a period of 100 ms .
*5 : The total average output current is the average current for all pins over a period of 100 ms .
*6 : For use at $\mathrm{Ta}=+105^{\circ} \mathrm{C}$, lower the operating frequency to reduce power consumption.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91260B Series

2. Recommended Operating Conditions

(Vss = AVss = 0 V)

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	4.0	5.5	V	At normal operating
Analog power supply voltage	AV ${ }_{\text {cc }}$	Vss +4.0	Vss +5.5	V	
Analog reference voltage	AVRH0	AVss	AVcc	V	For A/D converter 0
	AVRH1	$\mathrm{AV}_{\text {ss }}$	AV ${ }_{\text {cc }}$	V	For A/D converter 1
	AVRH2	AVss	AV ${ }_{\text {cc }}$	V	For A/D converter 2
Operating temperature	Ta	-40	+ 105	${ }^{\circ} \mathrm{C}$	MASK product (at single chip operation)
		-40	+ 85	${ }^{\circ} \mathrm{C}$	FLASH product (at single chip operation)

Note: Upon power up, it takes approx. 100μ s for stabilization of internal power supply after the V cc power supply is stabilized. Keep applying " L " to INIT signal during that period.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91260B Series

3. DC Characteristics

$(\mathrm{Vcc}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})$

Parameter	$\begin{array}{\|c\|c} \hline \text { Sym } \\ \text { bol } \end{array}$	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	VIH	Other than hysteresis input pin	-	$0.8 \times \mathrm{Vcc}$	-	Vcc	V	
	VIнs	Hysteresis input pin	-	Vcc-0.4	-	Vcc	V	
Input Low Voltage	VIL	Other than hysteresis input pin	-	Vss	-	$0.2 \times \mathrm{Vcc}$	V	
	Vits	Hysteresis input pin	-	Vss	-	Vss +0.4	V	
" H " level output voltage	Vон	Other than P30 to P35	$\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loH}=4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
	Voн2	P30 to P35	$\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loH}=8.0 \mathrm{~mA} \end{aligned}$	Vcc-0.7	-	-	V	
Output Low Voltage	VoL	Other than P30 to P35	$\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
	VoL2	P30 to P35	$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V}, \\ & \mathrm{loL}=12 \mathrm{~mA} \end{aligned}$	-	-	0.6	V	
Input leak current	IL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Pull-up resistance	Rpule	$\overline{\mathrm{INIT}}$, Pull-up pin	-	-	50	-	$\mathrm{k} \Omega$	
Power supply current	Icc	Vcc	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, 33 \mathrm{MHz}$	-	90	100	mA	
	Iccs	Vcc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, 33 \mathrm{MHz}$	-	60	80	mA	At SLEEP
	Іссн	Vcc	$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$	-	300	-	$\mu \mathrm{A}$	At STOP
Input capacitance	Cin	Other than Vcc, Vss, $A V \mathrm{cc}, \mathrm{AVss}$, AVRH0, 1, 2	-	-	10	-	pF	

MB91260B Series

4. FLASH MEMORY write/erase characteristics

Parameter	Conditions	Value			Unit	Remarks
		Typ	Max			Not including time for internal writing before deletion.
Sector erase time		-	1	15	s	Not including time for internal writing before deletion.
Chip erase time	$\mathrm{Ta}=+25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=5.0 \mathrm{~V}$	-	10	-		
Byte write time	$\mathrm{Ta}=+25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=5.0 \mathrm{~V}$	-	8	3,600	$\mu \mathrm{~s}$	Not including system-level overhead time.
Chip write time	$\mathrm{Ta}=+25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=5.0 \mathrm{~V}$	-	2.1	-	s	Not including system-level overhead time.
Erase/write cycle	-	10,000	-	-	cycle	
Flash memory data retention time	Average $\mathrm{Ta}=+85^{\circ} \mathrm{C}$	20	-	-	year	$*$

*: This value comes from the technology qualification. (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$)

MB91260B Series

5. AC Characteristics

(1) Clock Timing Ratings
$(\mathrm{Vcc}=4.0$ to $5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})$

Parameter	$\underset{\text { Sym }}{\text { Sol }}$	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	fc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	-	3.6 *2	-	12	MHz	For using the PLL within the self-oscillation enabled range, set the multiplier for the internal clock not to let the operating frequency exceed 33 MHz .
Clock cycle time	tc	$\begin{aligned} & \text { X0 } \\ & \text { X1 } \end{aligned}$		83.3	-	278*2	ns	
Internal operating clock frequency	fcp	-	When 4.125 MHz is input as the X0 clock frequency and $\times 8$ multiplication is set for the PLL of the oscillator circuit.	2.06*1	-	33	MHz	CPU
	fcpp			2.06*1	-	33	MHz	Peripheral
Internal operating clock cycle time	tcp	-		30.3	-	485*1	ns	CPU
	tcpp			30.3	-	485*1	ns	Peripheral

*1: The values assume a gear cycle of $1 / 16$.
*2 : When the PLL is used, the lower-limit frequency of the input clock to the X 0 and X 1 pins determines depending on the PLL multiplication.
At $\times 1$ multiplication : more than 8 MHz
At $\times 2$ to $\times 8$ multiplication: more than 4 MHz

- Conditions for measuring the clock timing ratings

MB91260B Series

- Operation Assurance Range

- Internal clock setting range

Notes: - Oscillation stabilization time of PLL $>600 \mu \mathrm{~s}$

- The internal clock gear setting should be within the value shown in clock timing ratings table.

MB91260B Series

(2) Reset Input

$(\mathrm{Vcc}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})$							
Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
$\overline{\text { INIT input time }}$ (at power-on and STOP mode)	tintı	INIT	-	Oscillation time of oscillator + tc $\times 10$	-	ns	*
$\overline{\text { INIT }}$ input time (other than the above)				tc $\times 10$	-	ns	

*: After the power is stable, L level is kept inputting to $\overline{\mathrm{INIT}}$ for the duration of approximately $100 \mu \mathrm{~s}$ until the internal power is stabilized.

MB91260B Series

(3) UART Timing

$(\mathrm{V} \mathrm{cc}=4.0$ to $5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=\mathrm{AVss}=0 \mathrm{~V})$							
Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscrc	SCK0 to SCK2	Internal shift clock mode	8 toycp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to SCK2, SOT0 to SOT2		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK2, SINO to SIN2		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK2, SINO to SIN2		60	-	ns	
Serial clock H pulse width	tshsL	SCK0 to SCK2	External shift clock mode	4 tcycp	-	ns	
Serial clock L pulse width	tsLsh	SCK0 to SCK2		4 tcycp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to SCK2, SOT0 to SOT2		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	$\begin{aligned} & \text { SCK0 to SCK2, } \\ & \text { SIN0 to SIN2 } \end{aligned}$		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK0 to SCK2, } \\ & \text { SIN0 to SIN2 } \end{aligned}$		60	-	ns	

Notes: - There are the AC ratings for CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.

MB91260B Series

- Internal shift clock mode

- External shift clock mode

MB91260B Series

(4) Free-run Timer Clock, PWC Input and Reload Timer Trigger Timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	tтwh ttww	CKI PWIO, PWI1 TIN0 to TIN2	-	4 tcycp	-	ns	

Note : tcycp indicates the peripheral clock cycle time.

MB91260B Series

(5) Trigger Input Timing

$\left(\mathrm{V} \mathrm{cc}=4.0\right.$ to $\left.5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vss}=0 \mathrm{~V}\right)$							
Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Input capture trigger input	tinp	IC0 to IC3	-	5 toycp	-	ns	
A/D activation trigger input	tatgx	ADTG0 to ADTG2	-	5 tcycp	-	ns	

Note : tcycp indicates the peripheral clock cycle time.

MB91260B Series

6. Electrical Characteristics for the A/D Converter
$(\mathrm{Vcc}=\mathrm{AVcc}=5.0 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=\mathrm{AVss}=0 \mathrm{~V})$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error*1	-	-	-4	-	4	LSB	At $\mathrm{AVRHn}^{* 4}=5.0 \mathrm{~V}$
Linearity error*	-	-	-3.5	-	3.5	LSB	
Differential linearity error*1	-	-	-3	-	3	LSB	
Zero transition voltage*1	Vот	ANO to AN11	AVss - 3.5	AVss + 0.5	AVss + 4.5	LSB	
Full transition voltage*1	$V_{\text {fst }}$	AN0 to AN11	$\begin{gathered} \hline \text { AVRH - } \\ 5.5 \end{gathered}$	$\begin{gathered} \hline \text { AVRH - } \\ 1.5 \end{gathered}$	$\begin{gathered} \hline \text { AVRH }+ \\ 2.5 \end{gathered}$	LSB	
Conversion time	-	-	$1.2^{* 2}$	-	-	$\mu \mathrm{s}$	
Analog port Input current	Iain	AN0 to AN11	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	Vain	AN0 to AN11	AVss	-	AVRH	V	
Reference voltage	-	AVRHn	AVss	-	AVcc	V	
Analog power supply	1 A	AVcc	-	2	-	mA	Per 1 unit
$\begin{aligned} & \text { current } \\ & \text { (analog + digital) } \end{aligned}$	lat $^{* 3}$		-	-	100	$\mu \mathrm{A}$	Per 1 unit
reference power supply current (between AVRH and AVSS)	IR	AVRHn	-	1	-	mA	Per 1 unit $\mathrm{AVRHn}^{* 4}=5.0 \mathrm{~V}$, at $\mathrm{AVss}=0 \mathrm{~V}$
	$18{ }^{* 3}$		-	-	100	$\mu \mathrm{A}$	per 1 unit at STOP
Analog input capacitance	-	-	-	10	-	pF	
Inter-channel disparity	-	ANO to AN11	-	-	4	LSB	

*1 : Measured in the CPU sleep state
*2 : Vcc = AVcc = 5.0 V, machine clock at 33 MHz
*3 : The current when the CPU is in stop mode and the A/D converter is not operating (at $\mathrm{Vcc}=\mathrm{AVcc}=\mathrm{AVRHn}=5.0 \mathrm{~V}$)
*4: AVRHn = AVRH0, AVRH1, AVRH2
Notes : • The above does not guarantee the inter-unit accuracy.

- Set the output impedance of the external circuit $\leq 2 \mathrm{k} \Omega$.

MB91260B Series

- About the external impedance of the analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sampling and hold capacitor is insufficient, adversely affecting A/D conversion precision. So, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- Analog input circuit model

MB91263B
MB91264B
MB91F264B

R $2.0 \mathrm{k} \Omega$ (Max) $2.0 \mathrm{k} \Omega$ (Max) $2.0 \mathrm{k} \Omega$ (Max)

C
14.4 pF (Max)
14.4 pF (Max)
16.0 pF (Max)

Note : The values are reference values.

- The relationship between the external impedance and minimum sampling time

- About errors

As |AVRH - AVss| becomes smaller, values of relative errors grow larger.

MB91260B Series

Definition of A/D Converter Terms

- Resolution: Analog variation that is recognized by an A/D converter.
- Linearity error : Zero transition point ($0000000000 \longleftrightarrow 0000000001$) and full-scale transition point. Difference between the line connected ($1111111110 \longleftrightarrow \rightarrow 111111$ 1111) and actual conversion characteristics.
- Differential linearity error : Deviation of input voltage, that is required for changing output code by 1 LSB, from an ideal value.
- Total error : This error indicates the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error.

(Continued)

MB91260B Series

(Continued)

MB91260B Series

EXAMPLE CHARACTERISTICS

Power Supply Current vs. Internal Operation Frequency (MB91263B)

MB91260B Series

(Continued)

A/D Conversion Block Per 1 Unit (33 MHz) Analog Power Supply Current vs. Power Supply Voltage

(External impedance $=0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$)

Power Supply Current (at stop) vs. Power Supply Voltage

A/D Conversion Block Per 1 Unit (33 MHz) Reference Power Supply Current vs. Power Supply Voltage

(External impedance $=0 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$)

MB91260B Series

ORDERING INFORMATION

Part number	Package	Remarks
MB91F264BPF-G	100-pin plastic QFP (FPT-100P-M06)	
MB91F264BPF-GE1		Lead-free Package
MB91F264BPFV-G	100-pin plastic LQFP (FPT-100P-M05)	
MB91F264BPFV-GE1		Lead-free Package
MB91264BPF-G-xxx	100-pin plastic QFP (FPT-100P-M06)	
MB91264BPF-G-xxxE1		Lead-free Package
MB91264BPFV-G-xxx	100-pin plastic LQFP (FPT-100P-M05)	
MB91264BPFV-G-xxxE1		Lead-free Package
MB91263BPF-G-xxx	100-pin plastic QFP (FPT-100P-M06)	
MB91263BPF-G-xxxE1		Lead-free Package
MB91263BPFV-G-xxx	100-pin plastic LQFP (FPT-100P-M05)	
MB91263BPFV-G-xxxE1		Lead-free Package

MB91260B Series

PACKAGE DIMENSION

100 - pin plastic QFP
(FPT-100P-M06)

Note 1) *: These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

© 2002 FUJITSU LIITED F100008S-C.5.5
Dimensions in mm (inches)
Note: The values in parentheses are reference values.
(Continued)

MB91260B Series

(Continued)

© 2003 FUJITSU LIMTED F1000075-C.4.6
Dimensions in mm (inches)
Note: The values in parentheses are reference values.

MB91260B Series

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

