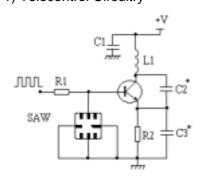


The LGER550 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at **433.920 MHz**.

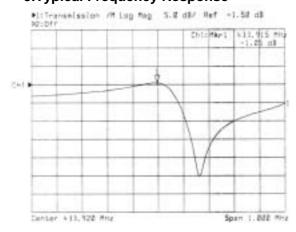
1.Package Dimension (QCC8C)

Pin	Connection			
2	Input / Output			
6	Output / Input			
4,8	Case Ground			
1,3,5,7	Empty			

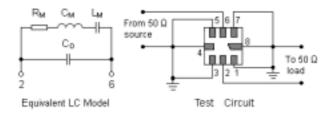
Sign	Data (unit: mm)	Sign	Data(unit:mm)
Α	2.08	Е	1.20
В	0.60	F	1.35
С	1.27	G	5.00
D	2.54	Н	5.00

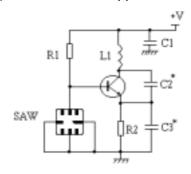

2.Marking

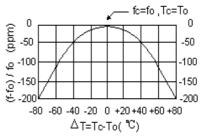
LGER550


Color: Black or Blue

4.Typical Application Circuit


1) Telecontrol Circuitry


5.Typical Frequency Response


3. Equivalent LC Model and Test Circuit

2) Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	±30V	VDC
Case Temperature	-40 to +85	$^{\circ}$
Soldering Temperature	+235	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency	Absolute Frequency	f _C	433.845		433.995	MHz
(+25℃)	Tolerance from 433.920 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.3	2.0	dB
Quality Factor	Unloaded Q	Q _U		10,500		
Quality Factor	50 Ω Loaded Q	Q_L		1,450		
	Turnover Temperature	To	25	40	55	$^{\circ}$
Temperature Stability	Turnover Frequency	f _O		fc		kHz
,	Frequency Temperature Coefficient	FTC		0.037		ppm/°C²
Frequency Aging Absolute Value during the First Year DC Insulation Resistance Between Any Two Pins		f _A		≤10		ppm/yr
			1.0			ΜΩ
	Motional Resistance	R _M		16	26	Ω
RF Equivalent	Motional Inductance	L _M		61.724		μН
RLC Model	Motional Capacitance	См		2.1817		fF
	Pin 2 to Pin 6 Static Capacitance	Co	1.9	2.2	2.5	pF

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

NOTES:

- 1. Frequency aging is the change in f_C with time and is specified at +65℃ or less. Aging may exceed the specification for prolonged temperatures above +65℃. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2.The center frequency, f_C ,is the frequency of minimum IL measured with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2 : 1. Typically, $f_{oscillator}$ or $f_{transmitter}$ is approximately equal to the resonator f_C .
- 3.Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- $6. Derived \ mathematically \ from \ one \ or \ more \ of \ the \ following \ directly \ measured \ parameters: \ f_C, \ IL, \ 3 \ dB \ bandwidth, \ f_C \ versus \ T_C \ , \ and \ C_O.$
- 7. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 , The nominal center frequency at any case temperature, T_0 , may be calculated from :f = f_0 [1-FTC (T_0 - T_0) 2]. Typically, oscillator T_0 is approximately equal to the specified resonator T_0 .
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only . The capacitance C_O is the static (nonmotional) capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. Case parasitic capacitance is approximately 0.05pF. Transducer parallel capacitance can by calculated as: $C_P = C_O 0.05pF$.