N-Channel Power MOSFET 800 V, 4.5 Ω

Features

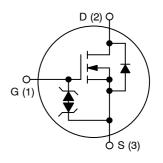
- ESD Diode-Protected Gate
- 100% Avalanche Tested
- 100% Rg Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

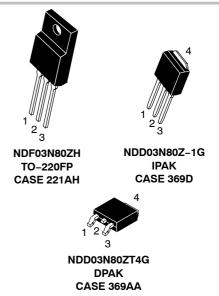
ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	NDD	NDF	Unit
Drain-to-Source Voltage	V _{DSS}	800		V
Continuous Drain Current R _{θJC}	I _D 2.9 3.3 (Note 1			Α
Continuous Drain Current $R_{\theta JC}$, $T_A = 100^{\circ}C$	Ι _D	1.9	2.1 (Note 1)	Α
Pulsed Drain Current, V _{GS} @ 10 V	I _{DM}	12	13	Α
Power Dissipation $R_{\theta JC}$	P _D	96	25	W
Gate-to-Source Voltage	V _{GS}	±30		V
Single Pulse Avalanche Energy, I _D = 2.5 A	E _{AS}	100		mJ
ESD (HBM) (JESD22-A114)	V _{esd}	2300		V
RMS Isolation Voltage (t = 0.3 sec., R.H. \leq 30%, T _A = 25°C) (Figure 14)	V _{ISO}	4500		V
Peak Diode Recovery (Note 2)	dv/dt	4.5		V/ns
Continuous Source Current (Body Diode)	Is	3.3		Α
Maximum Temperature for Soldering Leads	TL	260		°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to 150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Limited by maximum junction temperature
- 2. $I_S = 3.3$ Å, $di/dt \le 100$ Å/ μ s, $V_{DD} \le BV_{DSS}$, $T_J = +150$ °C




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX
800 V	4.5 Ω @ 10 V

N-Channel

MARKING AND ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE

Parameter			Value	Unit
Junction-to-Case (Drain)	NDF03N80Z NDD03N80Z	$R_{\theta JC}$	4.0 1.3	°C/W
Junction-to-Ambient Steady State	(Note 3) NDF03N80Z (Note 4) NDD03N80Z (Note 3) NDD03N80Z-1	$R_{ hetaJA}$	50 33 96	

^{3.} Insertion mounted

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA		800			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°C, I _D = 1 mA			870		mV/°C
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 800 V, V _{GS} = 0 V	T _J = 25°C			1.0	μΑ
			T _J = 125°C			50	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±20 V				±10	μΑ
ON CHARACTERISTICS (Note 5)							-
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}$, $I_D = 50$) μΑ	3.0	4.1	4.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 25°C, I _D	= 50 μΑ		11		mV/°C
Static Drain-to-Source On Resistance	R _{DS(ON)}	V _{GS} = 10 V, I _D = 1.	2 A		3.7	4.5	Ω
Forward Transconductance	9FS	V _{DS} = 15 V, I _D = 1.	2 A		2.1		S
DYNAMIC CHARACTERISTICS							
Input Capacitance (Note 6)	C _{iss}				440		pF
Output Capacitance (Note 6)	C _{oss}	\/	1 M⊔-		52		
Reverse Transfer Capacitance (Note 6)	C _{rss}	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$			9.0		
Total Gate Charge (Note 6)	Q_{g}	V _{DS} = 400 V, I _D = 3.3 A, V _{GS} = 10 V			17		nC
Gate-to-Source Charge (Note 6)	Q _{gs}				3.5		
Gate-to-Drain ("Miller") Charge (Note 6)	Q_{gd}				9.1		
Plateau Voltage	V_{GP}				6.5		V
Gate Resistance	R_{g}				5.5		Ω
RESISTIVE SWITCHING CHARACTER	ISTICS (Note 7))					
Turn-on Delay Time	t _{d(on)}				9.0		ns
Rise Time	t _r	$V_{DD} = 400 \text{ V}, I_D = 3.$	3 A,		7.0		
Turn-off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, R_G = 0$	0 Ω		17		
Fall Time	t _f				9.0		
SOURCE-DRAIN DIODE CHARACTER	RISTICS						
Diode Forward Voltage	V_{SD}	I _S = 3.0 A, V _{GS} = 0 V	T _J = 25°C		0.9	1.6	V
Deverage December Time			T _J = 100°C		0.8	 	
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V}, V_{DD} = 30 \text{ V}$ $I_{S} = 3.3 \text{ A}, d_i/d_t = 100 \text{ A}/\mu\text{s}$			360	-	ns
Charge Time	t _a				81	 	-
Discharge Time	t _b				280		
Reverse Recovery Charge	Q_{rr}				1.3		nC

^{5.} Pulse Width \leq 380 μ s, Duty Cycle \leq 2%.

^{4.} Surface mounted on FR4 board using 1" sq. pad size (Cu area = 1.127" sq [2 oz] including traces).

^{6.} Guaranteed by design.
7. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

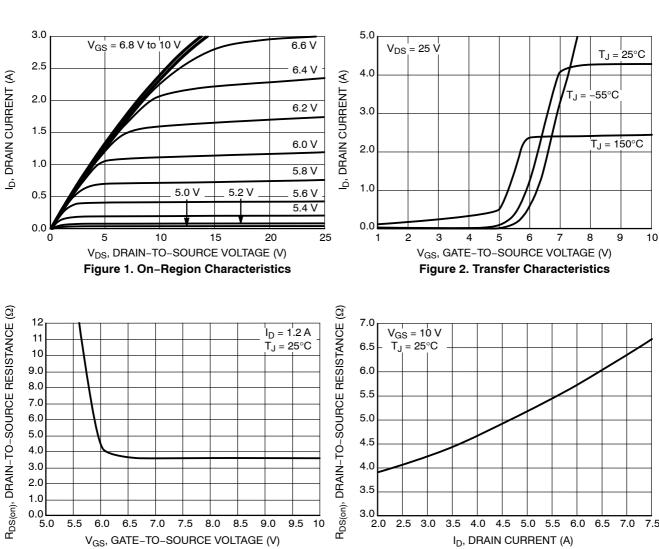


Figure 3. On-Region versus Gate-to-Source Voltage

Figure 4. On–Resistance versus Drain Current and Gate Voltage

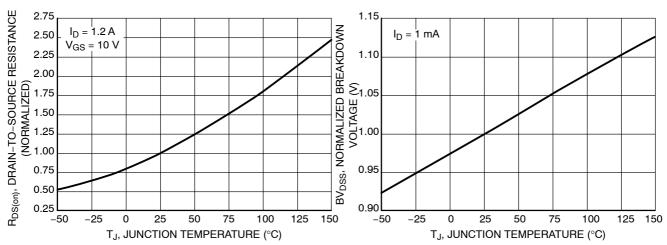


Figure 5. On–Resistance Variation with Temperature

Figure 6. BV_{DSS} Variation with Temperature

TYPICAL CHARACTERISTICS

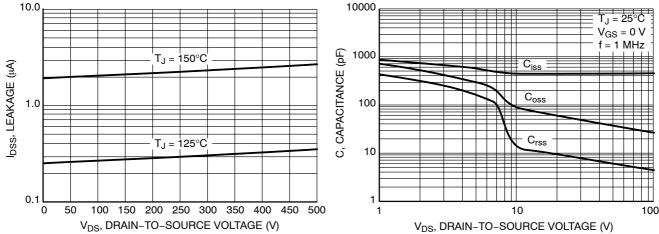


Figure 7. Drain-to-Source Leakage Current versus Voltage

Figure 8. Capacitance Variation

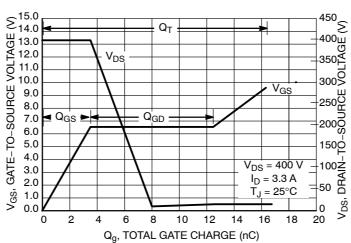


Figure 9. Gate-to-Source Voltage and Drain-to-Source Voltage versus Total Charge

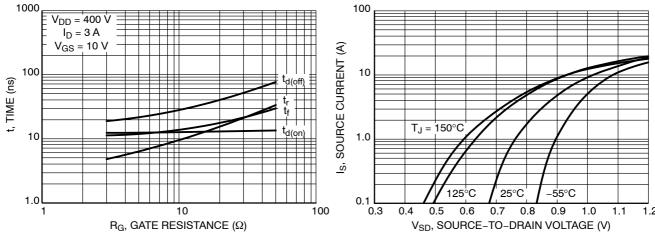


Figure 10. Resistive Switching Time Variation versus Gate Resistance

Figure 11. Diode Forward Voltage versus Current

TYPICAL CHARACTERISTICS

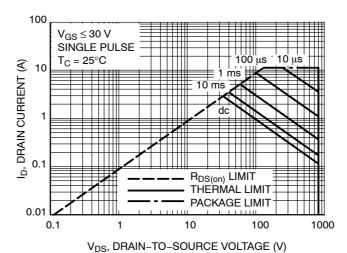


Figure 12. Maximum Rated Forward Biased
Safe Operating Area – NDD03N80Z

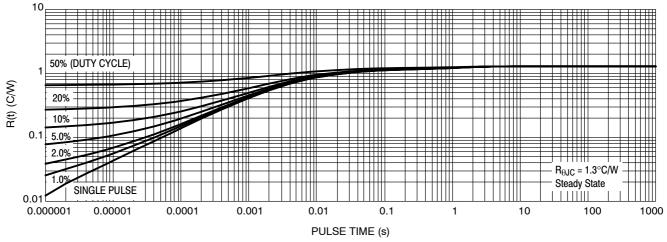


Figure 13. Thermal Impedance (Junction-to-Case) - NDD03N80Z

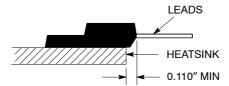


Figure 14. Isolation Test Diagram

Measurement made between leads and heatsink with all leads shorted together.

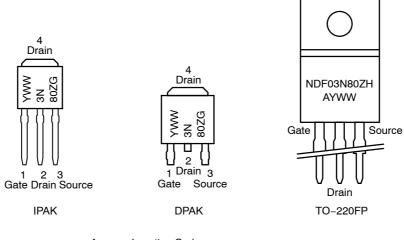

*For additional mounting information, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

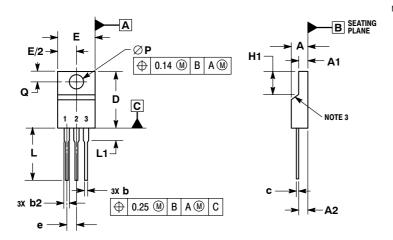
Table 1. ORDERING INFORMATION

Device	Package	Shipping [†]
NDD03N80Z-1G	IPAK (Pb-Free, Halogen-Free)	75 Units / Rail
NDD03N80ZT4G	DPAK (Pb-Free, Halogen-Free)	2500 / Tape & Reel
NDF03N80ZH (In Development)	TO-220FP (Pb-Free, Halogen-Free)	50 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS

A = Location Code

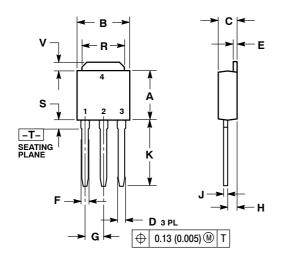

Y = Year

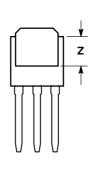
WW = Work Week

G, H = Pb-Free, Halogen-Free Package

PACKAGE DIMENSIONS

TO-220 FULLPACK, 3-LEAD CASE 221AH ISSUE C

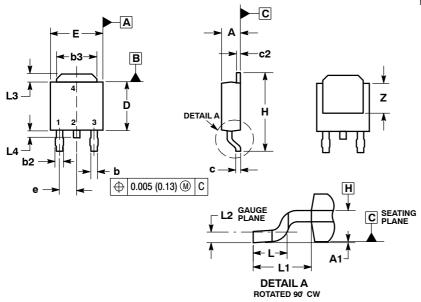

NOTES:


- IOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR UNCONTROLLED IN THIS AREA.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS AND TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY.
 5. DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00.

	MILLIMETERS				
DIM	MIN MAX				
Α	4.30	4.70			
A1	2.50	2.90			
A2	2.50	2.70			
b	0.54	0.84			
b2	1.10	1.40			
С	0.49	0.79			
D	14.70	15.30			
Е	9.70	10.30			
е	2.54	BSC			
H1	6.70	7.10			
L	12.70	14.73			
L1		2.80			
P	3.00	3.40			
Q	2.80 3.20				

IPAK CASE 369D ISSUE C

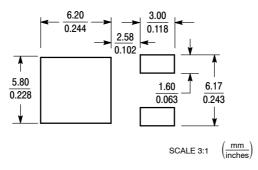

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29	BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
Κ	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA ISSUE B



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
 V14 5M 1994
- Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
- MENSIONS DS, LS BIRDS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74 REF	
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free LIS

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative