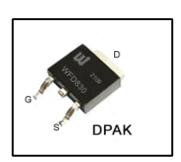


Silicon N-Channel MOSFET


Features

- 4.5A,500V,R_{DS(on)(}Max 1.5Ω)@V_{GS}=10V
- Ultra-low Gate Charge(Typical 32nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using Winsemi's advanced planar stripe, DMOS technology. This latest technology has been especially designed to minimize on-state resistance, have a high rugged avalanche characteristics. This devices is specially well suited for high efficiency switch model power supplies, power factor correction and half bridge and full bridge resonant topology line a electronic lamp ballast.

Absolute Maximum Ratings

Symbol	Parameter		Value	Units	
VDSS	Drain Source Voltage		500	V	
	Continuous Drain Current(@Tc=25℃)		4.5	А	
lo lo	Continuous Drain Current(@Tc=100°C)		2.9	А	
Ірм	Drain Current Pulsed (N	ote1)	18	А	
Vgs	Gate to Source Voltage		±30	V	
Eas	Single Pulsed Avalanche Energy (No.	ote 2)	300	mJ	
Ear	Repetitive Avalanche Energy (N	ote 1)	7.5	mJ	
dv/dt	Peak Diode Recovery dv/dt (No	ote 3)	4.5	V/ns	
Po	Total Power Dissipation(@Tc=25℃)		48	W	
PD	Derating Factor above 25℃		0.38	W/°C	
TJ, Tstg	Junction and Storage Temperature		-55~150	$^{\circ}$ C	
TL	Channel Temperature		300	$^{\circ}$	

Thermal Characteristics

Symbol	Parameter		Value	Units	
Symbol	Farameter	Min	Тур	Max	Offics
Rajc	Thermal Resistance, Junction-to-Case	-	-	2.6	°C/W
RQJA	Thermal Resistance, Junction-to-Ambient*	-	-	50	°C/W
RQJA	Thermal Resistance, Junction-to-Ambient	-	-	110	°C/W

^{*}When mounted on the minimum pad size recommended(PCB Mount)

Electrical Characteristics (Tc = 25° C)

Charact	eristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage curr	ent	Igss	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
Gate-source brea	kdown voltage	V(BR)GSS	Ig = $\pm 10 \mu A$, Vps = 0 V	±30	-	-	٧
Drain cut-off curre	ent	loss	V _{DS} = 500 V, V _{GS} = 0 V	-	-	1	μA
Drain-source brea	akdown voltage	V _{(BR)DSS}	I _D = 250 μA, V _{GS} = 0 V	500	-	-	V
Break Voltage Tel	mperature	ΔBV _{DSS} / ΔTJ	I_D =250 μ A, Referenced to 25 $^{\circ}\mathrm{C}$	-	0.55	-	V/°C
Gate threshold vo	Itage	V _{GS(th)}	V _{DS} = 10 V, I _D =250 μA	2	-	4	V
Drain-source ON	resistance	RDS(ON)	Vgs = 10 V, ID = 2.25A	-	1.16	1.5	Ω
Forward Transcor	iductance	gfs	V _{DS} = 40 V, I _D = 2.25A	-	4.2	-	S
Input capacitance		Ciss	V _{DS} = 25 V,	-	800	1050	
Reverse transfer capacitance		Crss	V _G S = 0 V,	-	18	23	pF
Output capacitano	Output capacitance		f = 1 MHz	-	76	100	
	Rise time	tr	V _{DD} =250 V,	-	15	40	ns
Switching time	Turn-on time	ton	ID =4.5A	-	40	90	
Switching time	Fall time	tf	Rg=25Ω	-	85	180	
	Turn-off time	toff	(Note4,5)	-	45	100	
Total gate charge (gate-source plus gate-drain)		Qg	V _{DD} = 400 V, V _{GS} = 10 V,	-	32	44	200
Gate-source charge		Qgs	ID =4.5 A	-	3.7	-	nC
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	15	-	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Type	Max	Unit
Continuous drain reverse current	IDR	-	-	-	4.5	Α
Pulse drain reverse current	IDRP	-	-	-	18	Α
Forward voltage (diode)	VDSF	IDR = 4.5 A, Vgs = 0 V	-	-	1.4	٧
Reverse recovery time	trr	IDR = 4.5 A, VGS = 0 V,	-	305	-	ns
Reverse recovery charge	Qrr	dl _{DR} / dt = 100 A / μs	-	2.6	-	μC

Note 1.Repeativity rating :pulse width limited by junction temperature

2.L=24mH,I_As=4.5A,V_DD=50V,R_G=25\Omega,Starting T_J=25 $^{\circ}\mathrm{C}$

4.Pulse Test: Pulse Width≤300us, Duty Cycle≤2%

5. Essentially independent of operating temperature.

This transistor is an electrostatic sensitive device

Please handle with caution

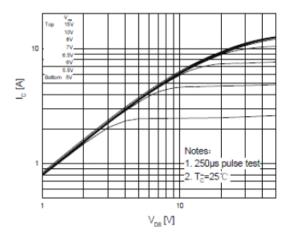


Fig.1 On-State Characteristics

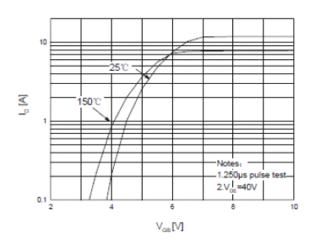


Fig.2 Transfer Current characteristics

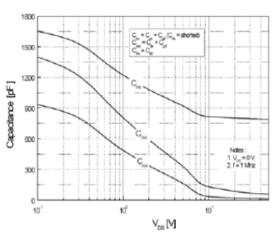


Fig.3 Capacitance Variation vs drain voltage

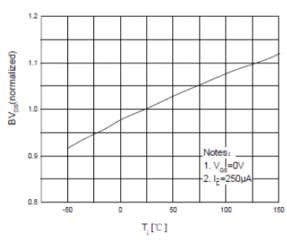


Fig.4 Breakdown Voltage Variation
Vs Temperature

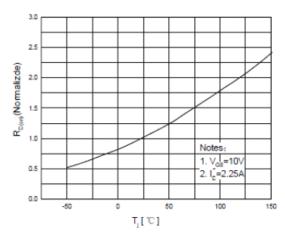


Fig.5 On-Resistance Variation vs.JunctionTemperature

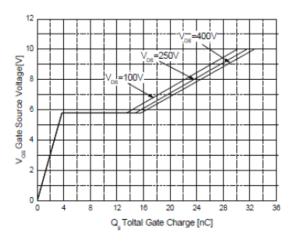


Fig.6 Gate Charge Characteristics

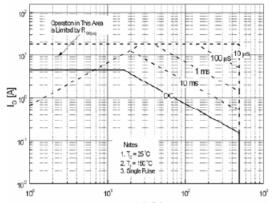


Fig.7 Maximum Safe Operation Area

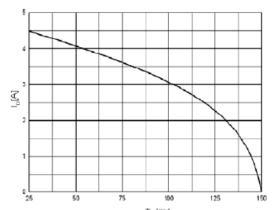


Fig.8 Maximum Drain Current vs

Case Temperature

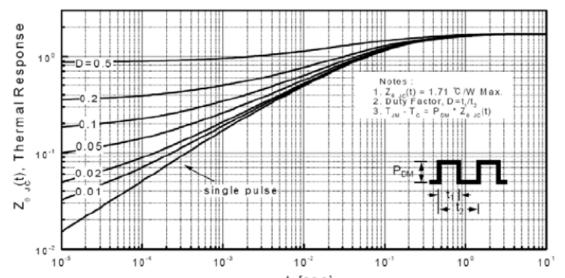


Fig.9Transient Thermal Response Curve

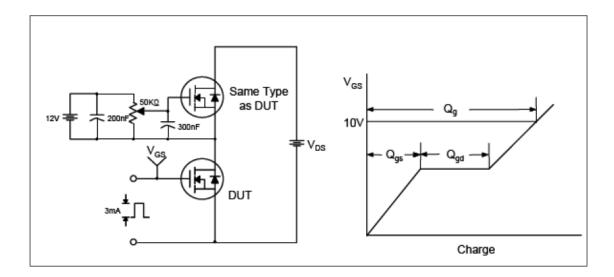


Fig.10 Gate Test Circuit & Waveform

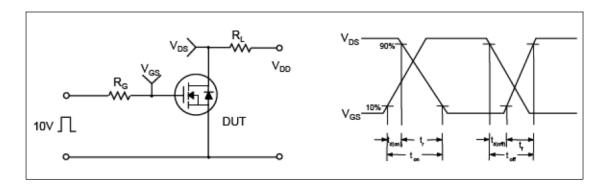


Fig.11 Resistive Switching Test Circuit & Waveform

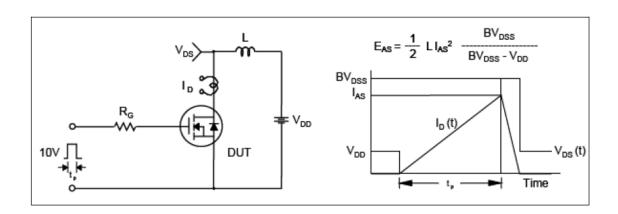


Fig.12 Unclamped Inductive Switching Test Circuit & Waveform

W

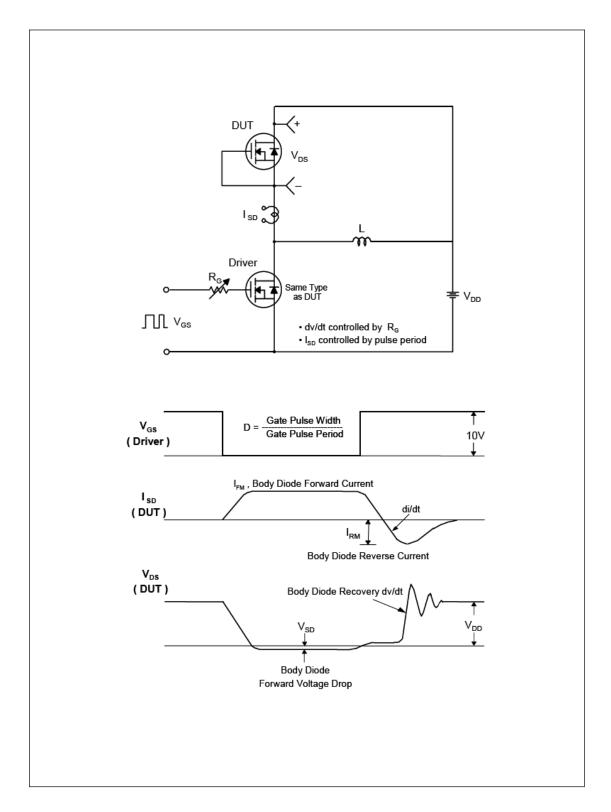
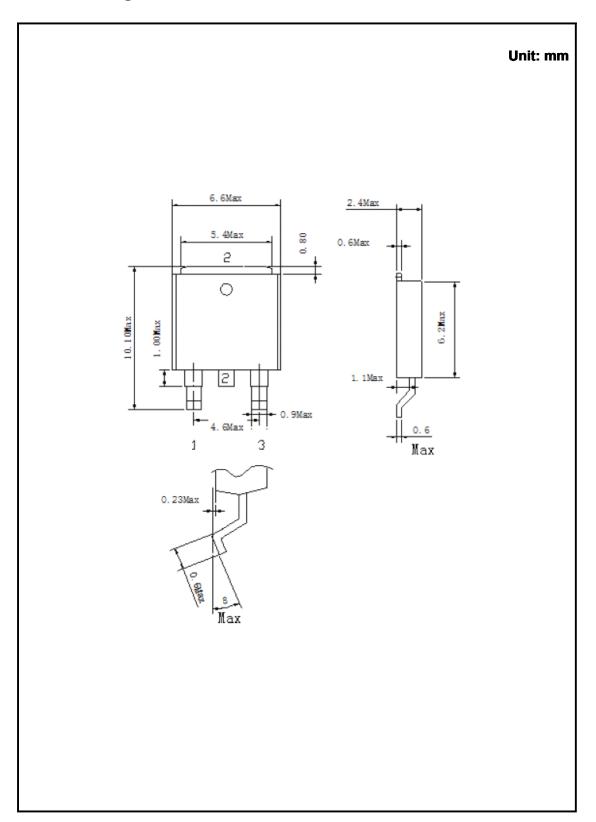



Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

TO-252 Package Dimension

