
# Plastic Fiber Optic IR LEDS



## **APPLICATIONS**

- ➤ Low-Cost Analog and Digital Data Links
- ➤ Digitized Audio
- ➤ Optical Sensors
- ➤ Medical Instruments
- ➤ Robotics Communications
- ➤ Motor Controller Triggering
- ➤ EMC/EMI signal Isolation
- ➤ Electronic Games
- ➤ Intra-System Links: Board-to-Board, Rack-to-Rack

### DESCRIPTION

The IF-E91A and IF-E91B are high-output medium-speed infrared LEDs in a "connector-less" style plastic fiber optic package. The output spectrum peaks at 950 nm for the IF-E91A and 880 nm for the IF-E91B. The device package features an internal micro-lens, and a precision-molded PBT housing ensures efficient optical coupling into standard 1000  $\mu$ m plastic fiber cable.

## APPLICATION HIGHLIGHTS

The high output and fast transition times of the IF-E91A and IF-E91B make them suitable for low-cost analog and digital data links. Used with an IF-D96 photologic detector, the IF-E91A and IF-E91B can achieve data rates of 500 Kbps and 1 Mbps respectively at link distances up to 7 m. The drive circuit design is simpler than required for laser diodes, making the IF-E91A and IF-E91B excellent low-cost alternatives in a variety of analog and digital applications.

### **FEATURES**

- ◆ Excellent Linearity
- ◆ No Optical Design Required
- Mates with Standard 1000 μm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-Lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing

## MAXIMUM RATINGS

 $(T_{\Delta} = 25^{\circ}C)$ 

| - 11                                                                                           |
|------------------------------------------------------------------------------------------------|
| Operating and Storage<br>Temperature Range<br>(T <sub>OP</sub> , T <sub>STG</sub> )40° to 85°C |
| Junction Temperature (T <sub>J</sub> )85°C                                                     |
| Soldering Temperature (2 mm from case bottom) $(T_S)$ t $\leq$ 5 s240° C                       |
| Reverse Voltage (V <sub>R</sub> )3 V                                                           |
| Power Dissipation $(P_{TOT})$ $T_A = 25$ °C100 mW                                              |
| De-rate Above 25°C1.33 mW/°C                                                                   |
| Forward Current, DC (I <sub>F</sub> )  IF-E91A50 mA  IF-E91B100 mA                             |

Surge Current (I<sub>FSM</sub>) t≤10 μsec IF-E91A.......2 A IF-E91B......2 A

## **CHARACTERISTICS** $(T_A=25^{\circ}C)$

| Parameter                                                                                                                              | Symbol                          | IF-E91A     | IF-E91B*     | Unit      |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|--------------|-----------|
| Peak Wavelength                                                                                                                        | $\lambda_{	ext{PEAK}}$          | 950         | 880          | nm        |
| Spectral Bandwidth (50% of I <sub>MAX</sub> )                                                                                          | Δλ                              | 40          | 80           | nm        |
| Output Power Coupled into Plastic Fiber (1 mm core diameter). Distance Lens to Fiber $\leq$ 0.1 mm, 10 cm polished fiber, $I_F$ =20 mA | $\Phi_{	ext{min}}$              | >100<br>-10 | >75<br>-11.2 | μW<br>dBm |
| Switching Times (10% to 90% and 90% to 10%) (RL=47 $\Omega$ , IF=10 mA)                                                                | t <sub>r</sub> , t <sub>f</sub> | 1.0         | 0.5          | μs        |
| Capacitance                                                                                                                            | C <sub>0</sub>                  | 25          | 25           | pF        |
| Forward Voltage (I <sub>F</sub> =50 mA)                                                                                                | V <sub>f</sub>                  | 1.5 max     | 1.7 max      | V         |
| Temperature Coefficient, λ <sub>PEAK</sub>                                                                                             | TC <sub>λ</sub>                 | 0.3         | 0.3          | nm/K      |

<sup>\*</sup> IF-E91D recommended for new designs



# Plastic Fiber Optic IR LEDs

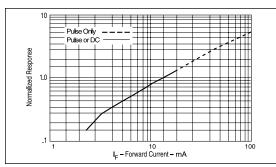
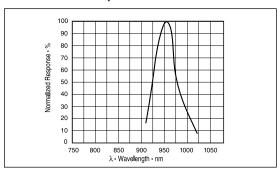




FIGURE 1. Normalized power launched versus forward current.



 $\textbf{FIGURE~2.} \ \, \textbf{Typical spectral output vs. wavelength}.$ 

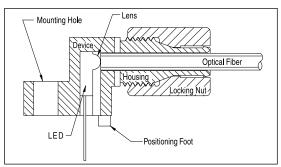
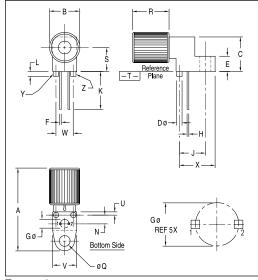




FIGURE 3. Cross-section of fiber optic device.

## FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.



#### Notes:

- Y AND Z ARE DATUM DIMENSIONS AND T IS A DATUM SURFACE.
- 2. POSITIONAL TOLERANCE FOR D Ø (2 PL):
- 3. POSITIONAL TOLERANCE FOR F DIM (2 PL): ♦ 0.25(0.010) M T Y M Z M
- 4. POSITIONAL TOLERANCE FOR H DIM (2 PL):
- 5. POSITIONAL TOLERANCE FOR Q Ø:
- ⊕ ø 0.25(0.010) Ø T Y Ø Z Ø
- 6. POSITIONAL TOLERANCE FOR B: ⊕ ø 0.25(0.010) M T
- 7. DIMENSIONING AND TOLERANCING PER ANSI Y14,5M, 1982.
- 8. CONTROLLING DIMENSION: INCH

### PACKAGE IDENTIFICATION:

- ◆ E91A-Blue housing w/ Blue dot E91B-Blue housing w/ Green dot
- PIN 1. Cathode
- · PIN 2. Anode

|     | MILLIMETERS |       | INCHES   |      |  |
|-----|-------------|-------|----------|------|--|
| DIM | MIN         | MAX   | MIN      | MAX  |  |
| Α   | 23.24       | 25.27 | .915     | .995 |  |
| В   | 8.64        | 9.14  | .340     | .360 |  |
| С   | 9.91        | 10,41 | .390     | .410 |  |
| D   | 1.52        | 1.63  | .060     | .064 |  |
| Ε   | 4.19        | 4.70  | .165     | .185 |  |
| F   | 0.43        | 0.58  | .017     | .023 |  |
| G   | 2.54 BSC    |       | .100 BSC |      |  |
| Н   | 0.43        | 0.58  | .017     | .023 |  |
| J   | 7.62 BSC    |       | .300 BSC |      |  |
| K   | 10.35       | 11.87 | .408     | .468 |  |
| L   | 1.14        | 1.65  | .045     | .065 |  |
| N   | 2.54 BSC    |       | .100 BSC |      |  |
| Q   | .305        | 3.30  | .120     | .130 |  |
| R   | 10.48       | 10.99 | .413     | .433 |  |
| S   | 6.98 BSC    |       | .275 BSC |      |  |
| U   | 0.83        | 1.06  | .032     | .042 |  |
| ٧   | 6.86        | 7.11  | .270     | .280 |  |
| W   | 5.08 BSC    |       | .200 BSC |      |  |
| Х   | 10,10       | 10.68 | .397     | .427 |  |

FIGURE 4. Case outline.