DESCRIPTION

These N-Channel enhancement mode power field effect transistors are produced using Fairchild' s proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	I	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSs}}$	500	V
Drain Current - Continuous	I_{D}	4.5	A
Drain Current - Pulsed	I_{DM}	18	A
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GSs}}$	± 30	V
Power Dissipation	P_{D}	85	W
Max. Operating Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Unit
Drain-Source Breakdown Voltage	$\mathrm{BV}_{\mathrm{DSS}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	500	-	-	V
Zero Gate Voltage Drain Current	$\mathrm{I}_{\mathrm{DSS}}$	$\mathrm{V}_{\mathrm{DS}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1.0	uA
Gate-Body Leakage Current, Forward	$\mathrm{I}_{\mathrm{GSSF}}$	$\mathrm{V}_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	100	nA
Gate-Body Leakage Current, Reverse	$\mathrm{I}_{\mathrm{GSSR}}$	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	-100	nA
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3.0	-	5.0	V
Static Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.25 \mathrm{~A}$	-	1.36	1.8	Ω
Drain-Source Diode Forward Voltage	V_{SD}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=4.5 \mathrm{~A}$	-	-	1.4	V

