

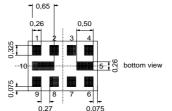
SAW Components

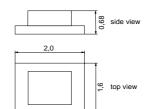
SAW Rx 2in1 filter GSM 900 / GSM 1800

Series/type: Ordering code: B9308 B39182B9308G110

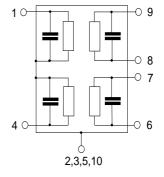
Date: Version: August 15, 2006 2.1

© EPCOS AG 2005. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.


SAW Components		B9308
SAW Rx 2in1 filter		942.5 / 1842.5 MHz
Data sheet	SMD	
Application		
 Low-loss 2in1 RF filter for mo 900 and GSM 1800 systems, Usable passband: Filter 1 (GSM 1800): 75 MHz 	•	0 9 00 0 S


- Filter 1 Filter 2 (GSM 900): 35 MHz
- Unbalanced to balanced operation for both filters
- Very low insertion attenuation
- Low amplitute ripple
- Impedance transformation from 50 Ω to 150 Ω for both filters
- Suitable for GPRS class 1 to 12

Features


- Package size 2.0 x1.6 x 0.68 mm³
- Package code QCS10H
- RoHS compatible
- Approx. weight 0.008 g
- Package for Surface Mount Technology (SMT)
- Ni, gold-plated terminals
- Electrostatic Sensitive Device (ESD)

Pin configuration

- 1 Input [Filter 1]
- 4 Input [Filter 2]
- 6,7 Output, balanced [Filter 2]
- Output, balanced [Filter 1] 8,9
- 2,3,5,10 Case-ground

Please read cautions and warnings and important notes at the end of this document.

August 15, 2006

2

SAW Components						
SAW Rx 2in1 filter					942	.5 / 1842
Data sheet	2	SMI				
Characteristics of Filter 1 (GSM 180	00)					
Temperature range for specification: Terminating source impedance: Terminating load impedance:	$T = Z_S = Z_L =$	50 Ω	to +85 °C ∣ 15 nH (l	balanced)	
						1
			min.	typ. @25°C	max.	
Center frequency		f _C		1842.5	_	MHz
Maximum insertion attenuation 1805.0 1880.0	MHz	α _{max}	—	1.6 ¹⁾	2.3 ²⁾	dB
Amplitude ripple (p-p) 1805.0 1880.0	MHz	Δα	_	0.7	1.3 ³⁾	dB
Input VSWR 1805.0 1880.0	MHz		—	1.8	2.2	
Output VSWR 1805.0 1880.0	MHz			1.7	2.2	
Output amplitude balance (S ₃₁ /S ₂₁	D					
1805.0 1880.0	MHz		-1.0	-0.5/0.7	1.0	dB
Output phase balance (φ(S ₃₁)–φ(S ₂₁) 1805.0 1880.0)+180°) MHz)	-10	-3/+3	10	•
Attenuation		α				
10.0 902.0 902.0 940.0	MHz MHz		45 45	52 52	_	dB dB
940.0 1705.0 1705.0 1785.0 1920.0 1980.0	MHz MHz MHz		28 12 ⁴⁾ 17	36 18 22		dB dB dB
1980.0 2030.0 2030.0 2400.0	MHz MHz		25 28	30 34	_	dB dB
2400.0 2500.0 2500.0 2775.0 2775.0 2880.0	MHz MHz MHz		32 28 38	38 32	_	dB dB dB
2775.0 2880.0 2880.0 3610.0 3610.0 3760.0	MHz MHz MHz		38 28 38	58 54 56	_ _ _	dB dB dB
3760.0 5415.0 5415.0 5640.0	MHz MHz		28 35	48 48	_	dB dB
5640.0 6000.0	MHz		28	48		dB

¹⁾ Typical value excluding PCB losses of 0.27 dB. ²⁾ 2.1 dB at 25 °C. ³⁾ 1.0 dB at 25 °C. ⁴⁾ 14 dB at 25 °C.

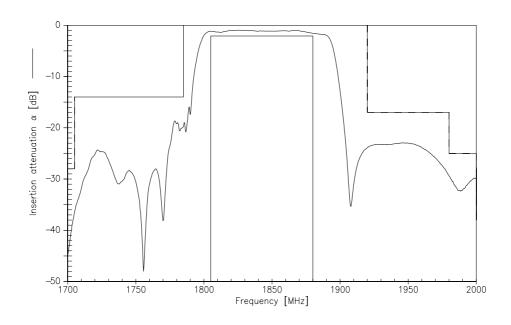
Please read *cautions and warnings and important notes* at the end of this document.

Data sheet

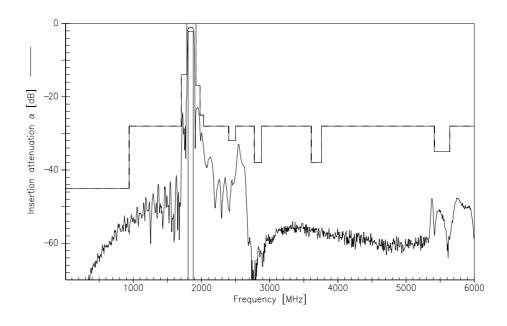
SMD

Maximum ratings of Filter 1

Operable temperature range	Т	-40/+85	°C	
Storage temperature range	T _{stg}	-40/+85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V _{ESD}	50 ¹⁾	V	machine model, 10 pulses
Input power at GSM 850, GSM 900 GSM 1800, GSM 1900	P _{IN} P _{IN}	15 15	dBm dBm	effective power in the on-state, duty cycle 4:8
Tx bands				


 $^{1)}\,$ acc. to JESD22-A115A (machine model), 10 negative & 10 positive pulses.

4



Transfer function of Filter 1

Transfer function of Filter 1 (wideband)

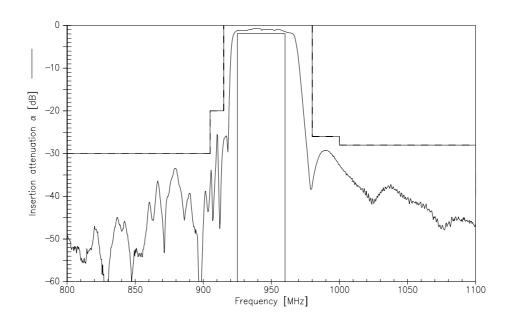
5

Please read *cautions and warnings and important notes* at the end of this document.

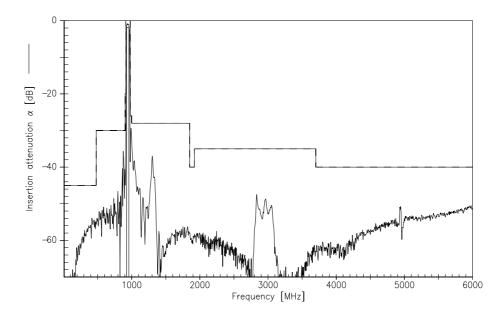
SAW Components						B9308
SAW Rx 2in1 filter 942.5 /					2.5 / 1842.5 MHz	
Data sheet Since And Since						
Characteristics of Filter 2 (GSM 900))					
Temperature range for specification:		T =	-20 °C	to +85 °C		
Terminating source impedance:		$Z_{\rm S}$ =	50 Ω			
Terminating load impedance:		<i>Z</i> _L =	150 Ω	82 nH (b	alanced)
			min.	typ.	max.	
				@25°C		
Center frequency		f _C	_	942.5	_	MHz
Maximum insertion attenuation		α_{max}				
925.0 960.0	MHz		_	1.4 ¹⁾	2.1 ²⁾	dB
Amplitude ripple (p-p)		Δα				
925.0 960.0	MHz			0.7	1.3 ³⁾	dB
Input VSWR						
925.0 960.0	MHz		_	1.8	2.1	
Output VSWR						
925.0 960.0	MHz		—	1.9	2.2	
Output amplitude balance (S ₃₁ /S ₂₁) 925.0 960.0) MHz		-1.0	-0.5/0.5	1.0	dB
925.0 960.0	IVITIZ		-1.0	-0.5/0.5	1.0	uв
Output phase balance $(\phi(S_{31})-\phi(S_{21}))$	+180°)					
925.0 960.0	MHz	′	-10	-1/+2	10	°
Attenuation		α				
10.0 480.0	MHz		45	52	—	dB
480.0 905.0	MHz		30	33		dB
905.0 915.0	MHz		20	26	—	dB
980.0 1000.0 1000.0 1850.0	MHz MHz		26 28	28 33		dB dB
1850.0 1850.0	MHZ		28 40	33 56	_	dB
1920.0 3700.0	MHz		40 35	46	_	dB
3700.0 6000.0	MHz		40	50		dB

¹⁾ Typical value excluding PCB losses of 0.16 dB. ²⁾ 1.9 dB at 25 $^{\circ}$ C. ³⁾ 1.2 dB at 25 $^{\circ}$ C.

Maximum ratings of Filter 2


Operable temperature range	Т	-40/+85	°C	
Storage temperature range	T _{stg}	-40/+85	°C	
DC voltage	V_{DC}	5	V	
ESD voltage	V_{ESD}	100 ¹⁾	V	machine model, 10 pulses
Input power at GSM 850, GSM 900 GSM 1800, GSM 1900 Tx bands	P _{IN} P _{IN}	15 15	dBm dBm	effective power in the on-state, duty cycle 4:8

 $^{1)}\,$ acc. to JESD22-A115A (machine model), 10 negative & 10 positive pulses.



Transfer function of Filter 2

Transfer function of Filter 2 (wideband)

8

Please read *cautions and warnings and important notes* at the end of this document.

942.5 / 1842.5 MHz

SAW Rx 2in1 filter

SMD

Data sheet

References

Туре	B9308
Ordering code	B39182B9308G110
Marking and package	C61157-A7-A141
Packaging	F61074-V8152-Z000
Date code	L_1126
S-parameters	B9308_LB_NB.s3p B9308_LB_WB.s3p B9308_UB_NB.s3p B9308_UB_WB.s3p
Soldering profile	S_6001
RoHS compatible	defined as compatible with the following documents: "DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. 2005/618/EC from April 18th, 2005, amending Directive 2002/95/EC of the European Parliament and of the Council for the purposes of establishing the maxi- mum concentration values for certain hazardous substances in electrical and electronic equipment."

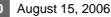
For further information please contact your local EPCOS sales office or visit our webpage at www.epcos.com .

Published by EPCOS AG

Surface Acoustic Wave Components Division P.O. Box 80 17 09, 81617 Munich, GERMANY

 $\ensuremath{\mathbb{C}}$ EPCOS AG 2006. This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.


Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

Please read *cautions and warnings and important notes* at the end of this document.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, CeraDiode, CSSP, PhaseCap, PhaseMod, SIFI, SIKOREL, Silver-Cap, SIMID, SIOV, SIP5D, SIP5K, TOPcap, UltraCap, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

