NTP75N06, NTB75N06

Power MOSFET

75 Amps, 60 Volts

N-Channel TO-220 and D2PAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	$\mathrm{V}_{\text {DSS }}$	60	Vdc
Drain-to-Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=10 \mathrm{M} \Omega$)	V DGR	60	Vdc
Gate-to-Source Voltage - Continuous - Non-Repetitive ($\mathrm{t}_{\mathrm{p}} \leq 10 \mathrm{~ms}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}} \\ & \mathrm{~V}_{\mathrm{GS}} \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$	Vdc
Drain Current -Continuous @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ - Continuous @ $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ - Single Pulse ($\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$)	$\begin{array}{r} \text { ID } \\ \text { ID } \\ \text { IDM } \\ \hline \end{array}$	$\begin{gathered} 75 \\ 50 \\ 225 \end{gathered}$	Adc Apk
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$ Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	PD_{D}	$\begin{gathered} \hline 214 \\ 1.4 \\ 2.4 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \\ \mathrm{~W} \end{gathered}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ +175 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Single Pulse Drain-to-Source Avalanche } \\ & \text { Energy - Starting } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \left(\mathrm{~V}_{\mathrm{DD}}=50 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{~L}=0.3 \mathrm{mH}\right. \\ & \left.\mathrm{I}_{\mathrm{L}(\mathrm{pk})}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=60 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{EAS}^{\text {A }}$	844	mJ
Thermal Resistance - Junction-to-Case - Junction-to-Ambient	$\begin{aligned} & R_{\theta J C} \\ & R_{\theta J A} \end{aligned}$	$\begin{gathered} 0.7 \\ 62.5 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes, $1 / 8^{\prime \prime}$ from case for 10 seconds	TL	260	${ }^{\circ} \mathrm{C}$

ON Semiconductor ${ }^{\text {w }}$

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
NTP75N06	TO-220AB	50 Units/Rail
NTB75N06	D2PAK	50 Units/Rail
NTB75N06T4	D2PAK	800/Tape \& Reel

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-to-Source Breakdown Voltage (Note 1.) $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{Adc}\right)$ Temperature Coefficient (Positive)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	60	$\begin{aligned} & 71 \\ & 73 \end{aligned}$	-	$\begin{gathered} \mathrm{Vdc} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
$\begin{aligned} & \text { Zero Gate Voltage Drain Current } \\ & \left(\mathrm{V}_{\mathrm{DS}}=60 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=60 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{TJ}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	IDSS	-	-	$\begin{gathered} 10 \\ 100 \end{gathered}$	$\mu \mathrm{Adc}$
Gate-Body Leakage Current ($\left.\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0 \mathrm{Vdc}\right)$	IGSS	-	-	± 100	nAdc

ON CHARACTERISTICS (Note 1.)

Gate Threshold Voltage (Note 1.) $\left(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{ID}_{\mathrm{D}}=250 \mu \mathrm{Adc}\right)$ Threshold Temperature Coefficient (Negative)	$\mathrm{V}_{\mathrm{GS}}($ th)	2.0	$\begin{aligned} & 2.8 \\ & 8.0 \end{aligned}$	4.0	$\begin{gathered} \mathrm{Vdc} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
Static Drain-to-Source On-Resistance (Note 1.) $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=37.5 \mathrm{Adc}\right)$	$\mathrm{R}_{\mathrm{DS}}(\mathrm{on})$	-	8.2	9.5	mOhm
$\begin{aligned} & \text { Static Drain-to-Source On-Voltage (Note 1.) } \\ & \quad\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{Adc}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=37.5 \mathrm{Adc}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	$\begin{aligned} & 0.72 \\ & 0.63 \end{aligned}$	0.86	Vdc
Forward Transconductance (Note 1.) (VDS $=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=37.5 \mathrm{Adc}$)	gFS	-	40.2	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=\right. \\ \left.\underset{\mathrm{f}}{25 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}}=0 \mathrm{MHz}\right) \end{gathered}$	Ciss	-	3220	4510	pF
Output Capacitance		Coss	-	1020	1430	
Transfer Capacitance		Crss	-	234	330	

SWITCHING CHARACTERISTICS (Note 2.)

Turn-On Delay Time	$(\mathrm{V} D \mathrm{~F}=30 \mathrm{Vdc}, \mathrm{ID}=75 \mathrm{Adc}$, $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{R}_{\mathrm{G}}=9.1 \Omega$) (Note 1.)	$t_{d}(0 n)$	-	16	25	ns
Rise Time		tr_{r}	-	112	155	
Turn-Off Delay Time		$\mathrm{td}_{\mathrm{d} \text { (off) }}$	-	90	125	
Fall Time		t_{f}	-	100	140	
Gate Charge	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=48 \mathrm{Vdc}, \mathrm{I} \mathrm{D}=75 \mathrm{Adc},\right. \\ \left.\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}\right)(\text { Note } 1 .) \end{gathered}$	QT	-	92	130	nC
		Q_{1}	-	14	-	
		Q_{2}	-	44	-	

SOURCE-DRAIN DIODE CHARACTERISTICS

Forward On-Voltage	(IS $=75 \mathrm{Adc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}$) (Note 1.) ($\mathrm{IS}=75 \mathrm{Adc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$)	$\mathrm{V}_{\text {SD }}$	-	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	1.1	Vdc
Reverse Recovery Time	$\begin{aligned} & \left(\mathrm{IS}=75 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ & \mathrm{dl} / \mathrm{dtt}=100 \mathrm{~A} / \mu \mathrm{ss})(\text { Note } 1 .) \end{aligned}$	trr	-	77	-	ns
		ta_{a}	-	49	-	
		t_{b}	-	28	-	
Reverse Recovery Stored Charge		QRR	-	0.16	-	$\mu \mathrm{C}$

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
2. Switching characteristics are independent of operating junction temperatures.

NTP75N06, NTB75N06

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTP75N06, NTB75N06

Figure 7. Capacitance Variation

R_{G}, GATE RESISTANCE (Ω)
Figure 9. Resistive Switching Time Variations vs. Gate Resistance

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

$\mathrm{V}_{\text {SD }}$, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

NTP75N06, NTB75N06

Figure 13. Thermal Response

NTP75N06, NTB75N06

PACKAGE DIMENSIONS

TO-220 THREE-LEAD
TO-220AB
CASE 221A-09
ISSUE AA

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
2. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

STYLE 5:
PIN 1. GATE
2. DRAIN
. SOURCE
SOURC

NTP75N06, NTB75N06

PACKAGE DIMENSIONS

D2PAK
CASE 418B-03 ISSUE D

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.340	0.380	8.64	9.65		
B	0.380	0.405	9.65	10.29		
C	0.160	0.190	4.06	4.83		
D	0.020	0.035	0.51	0.89		
E	0.045	0.055	1.14			
G	0.100		BSC	2.54		BSC
H	0.080	0.110	2.03			
J	0.018	0.025	2.79			
K	0.090	0.110	2.29	0.64		
S	0.575	0.625	14.60	15.88		
V	0.045	0.055	1.14	1.40		

STYLE 2:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

NTP75N06, NTB75N06

$$
\begin{aligned}
& \text { ON Semiconductor and } \\
& \text { without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular } \\
& \text { purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, } \\
& \text { including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or } \\
& \text { specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be } \\
& \text { validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. } \\
& \text { SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications } \\
& \text { intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or } \\
& \text { death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold } \\
& \text { SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable } \\
& \text { attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim } \\
& \text { alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. }
\end{aligned}
$$

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30 pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00 pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

