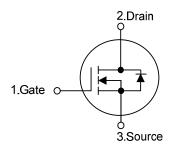


UNISONIC TECHNOLOGIES CO., LTD

3N65K **Power MOSFET**

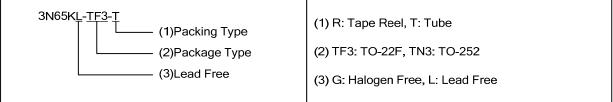
3A, 650V N-CHANNEL **POWER MOSFET**


DESCRIPTION

The UTC 3N65K is a high voltage and high current power MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche characteristics. This power MOSFET is usually used in high speed switching applications at power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)} = 3.8\Omega @V_{GS} = 10 V$
- * Ultra low gate charge (typical 10 nC)
- * Low reverse transfer capacitance (C_{RSS} = typical 5.5 pF)
- * Fast switching capability
- * Avalanche energy specified
- * Improved dv/dt capability, high ruggedness


SYMBOL

RDERING INFORMATION

Ordering	Deelrane	Pin	Assignn	Doolsing			
Lead Free	Halogen Free	Package	1	2	3	Packing	
3N65KL-TF3-T	3N65KG-TF3-T	TO-220F	G	D	S	Tube	
3N65KL-TN3-R	3N65KG-TN3-R	TO-252	G	D	S	Tape Reel	
3N65KL-TN3-T	3N65KG-TN3-T	TO-252	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

TO-220F TO-252

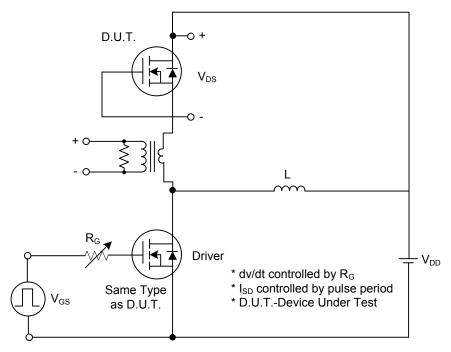
www.unisonic.com.tw 1 of 8

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

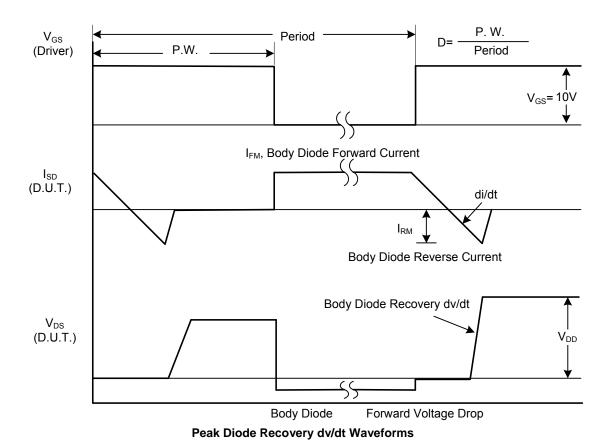
PARAMETER			ETER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage				$V_{ t DSS}$	650	V	
Gate-Source Voltage				V_{GSS}	±30	V	
Avalanche Current (Note 2)				I _{AR}	3.0	Α	
Continuous Drain Current				I _D	3.0	Α	
Pulse	d D	rain Current (Note	2)	I_{DM}	12	Α	
Avala	nah	o Enorgy	Single Pulsed (Note 3)	E _{AS}	45	mJ	
Avaia	IICI	ne Energy	Repetitive (Note 2)	E _{AR}	7.5	mJ	
Peak	Dio	de Recovery dv/dt	(Note 4)	dv/dt	4.5	V/ns	
			TO-220		75		
Power Dissipation			TO-220F/TO-220F1	P_D	34	W	
			TO-251/TO-252		50		
Junction Temperature				T_J	+150	°C	
Operating Temperature				T _{OPR}	-55 ~ +150	°C	
Storag	ge ⁻	Temperature		T _{STG}	-55 ~ +150	°C	
Note:	1.	Absolute maximun	n ratings are those value	s beyond whic	h the device could be permanently	/ damaged.	
		Absolute maximum ratings are stress ratings only and functional device operation is not implied.					
	2.	Repetitive Rating: Pulse width limited by maximum junction temperature					
	3.	L = 64mH, I_{AS} = 3.0A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C					
	4.	I _{SD} ≤ 3.0A, di/dt ≤200A/µs, V _{DD} ≤ BV _{DSS} , Starting T _J = 25°C					

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT	
Junction to Ambient	TO-220F	0	62.5	°C/M/	
	TO-252	θ _{JA}	110	°C/W	
lunation to Coop	TO-220F	0	3.68	°C/W	
Junction to Case	TO-252	θ _{JC}	2.5	C/vv	

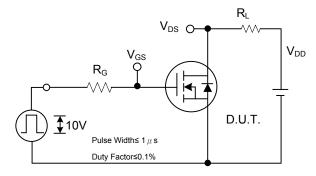

■ **ELECTRICAL CHARACTERISTICS** (T_C =25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage		BV_{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	650			V		
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$			10	μΑ		
Cata Sauraa Laakaga Current	Forward	1	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA		
Gate-Source Leakage Current	Reverse	I _{GSS}	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA		
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_J$	I _D =250μA,Referenced to 25°C		0.6		V/°C		
ON CHARACTERISTICS									
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V		
Static Drain-Source On-State Res	istance	R _{DS(ON)}	V _{GS} = 10V, I _D = 1.5A		2.9	3.8	Ω		
DYNAMIC CHARACTERISTICS									
Input Capacitance	Input Capacitance		V _{DS} = 25V, V _{GS} = 0V,		350	450	pF		
Output Capacitance		C _{ISS} C _{OSS}	V _{DS} = 25V, V _{GS} = UV, If = 1MHz		50	65	pF		
Reverse Transfer Capacitance		C_{RSS}			5.5	7.5	pF		
SWITCHING CHARACTERISTICS									
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time		$t_{D(ON)}$			10	30	ns		
		t _R	$V_{DD} = 325V, I_D = 3.0A,$		30	70	ns		
		t _{D(OFF)}	$R_G = 25\Omega \text{ (Note 1, 2)}$		20	50	ns		
		t _F			30	70	ns		
Total Gate Charge		Q_G	V _{DS} = 520V,I _D = 3.0A,		10	13	nC		
Gate-Source Charge		Q_GS	V _{GS} = 10 V (Note 1, 2)		2.7		nC		
Gate-Drain Charge		Q_{DD}	VGS- 10 V (Note 1, 2)		4.9		nC		
SOURCE- DRAIN DIODE RATIN	GS AND CH	HARACTERIST	ΓICS						
Drain-Source Diode Forward Voltage		V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 3.0 \text{ A}$			1.4	V		
Maximum Continuous Drain-Source Diode		Is				3.0	_		
Forward Current						3.0	Α		
Maximum Pulsed Drain-Source Diode						12	Α		
Forward Current		I _{SM}				12	^		
Reverse Recovery Time		t _{rr}	V _{GS} = 0 V, I _S = 3.0 A,		210		ns		
Reverse Recovery Charge		Q_{RR}	$dI_F/dt = 100A/\mu s \text{ (Note 1)}$				μC		

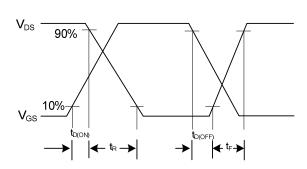

Notes: 1. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

^{2.} Essentially independent of operating temperature.

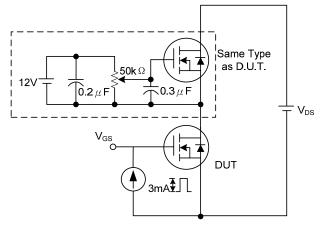
■ TEST CIRCUITS AND WAVEFORMS

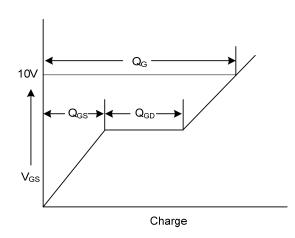


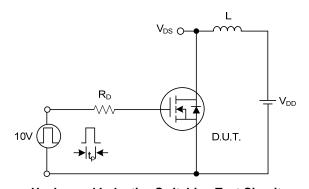
Peak Diode Recovery dv/dt Test Circuit

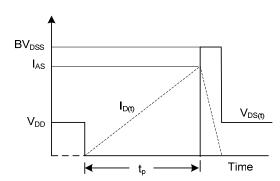


UTC UNISONIC TECHNOLOGIES CO., LTD www.unisonic.com.tw

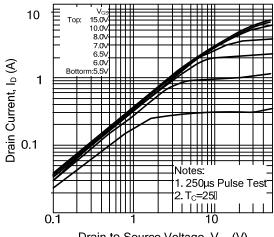

■ TEST CIRCUITS AND WAVEFORMS (Cont.)


Switching Test Circuit


Switching Waveforms


Gate Charge Test Circuit

Gate Charge Waveform


Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

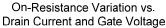
TYPICAL CHARACTERISTICS

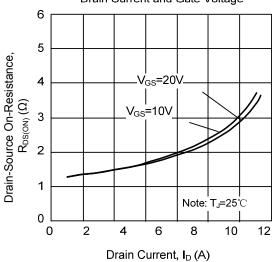
Drain-to-Source Voltage, V_{DS} (V)

Drain Current, I_D (A)

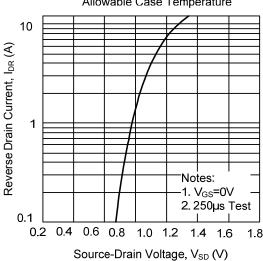
10

0.1

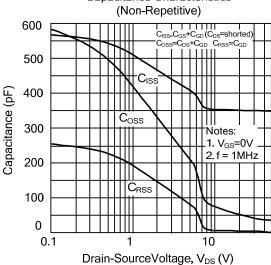

2

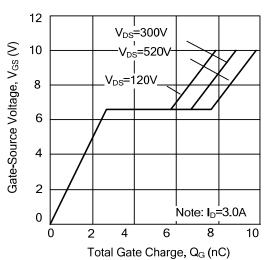

Transfer Characteristics

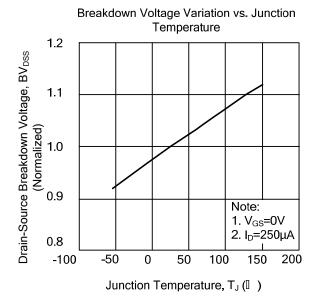
Gate-Source Voltage, VGS (V)

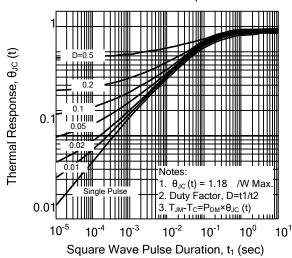

Notes:

1. V_{DS}=50V 2. 250µs Pulse Test




On State Current vs. Allowable Case Temperature

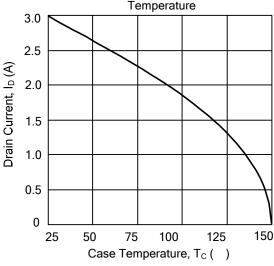

Capacitance Characteristics


Gate Charge Characteristics

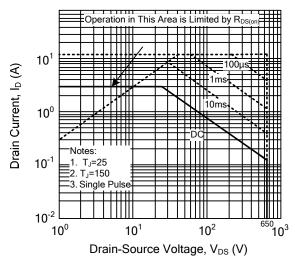
■ TYPICAL CHARACTERISTICS(Cont.)

Transient Thermal Response Curve

3.0 Drain-Source On-Resistance, R_{DS(ON)} 2.5 2.0 (Normalized) 1.5 1.0 Note: 0.5 1. V_{GS}=10√ 2. I_D=3A 0.0 -100 -50 50 100 150 200


On-Resistance Variation vs.

Junction Temperature


Junction Temperature, T_J (□)

Maximum Drain Current vs. Case

Temperature

Safe Operating Area

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.