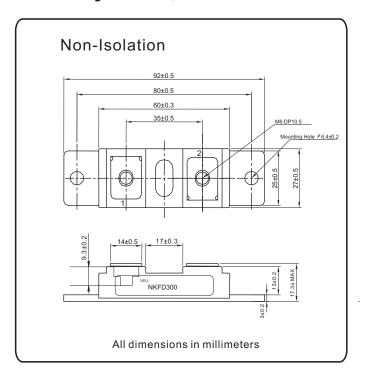


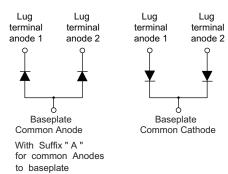
NKFD300 Series (TIES)

Nell High Power Products

FRED Ultrafast Soft Recovery Diode, 300 A

FEATURES


- Very low Q_{rr} and t_{rr}
- Lead (Pb)-free
- Designed and qualified for industrial level


BENEFITS

- Reduced RFI and EMI
- Reduced snubbing

DESCRIPTION

FRED diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. An extensive characterization of the recovery behavior for different values of current, temperature and dl/dt simplifies the calculations of losses in the operating conditions. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for power converters, motors drives and other applications where switching losses are significant portion of the total losses.

PRODUCT SUMMARY					
I _{F(AV)}	300A				
V _R	200 to 600 V				
I _{F(DC)} at T _c	300A at 85°C				

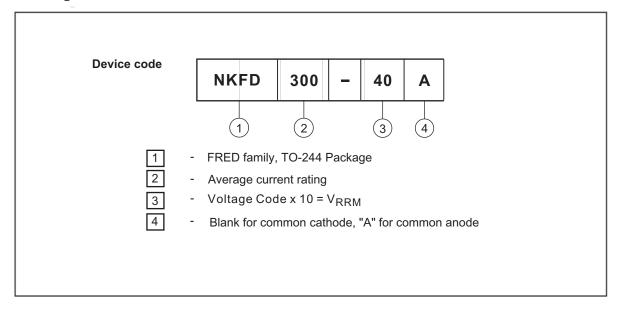
ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIO	VALUES	UNITS		
Cathode to anode voltage	V _R		200 to 600	V		
		T _C = 25°C	360			
Continuous forward current	I _F	T _C = 85°C	300	Α		
		T _C =100°C	150			
Single pulse forward current	I _{FSM}	Limited by junction temperature	1200			
Non-repetitive avalanche energy	E _{AS}	$L = 100 \mu H$, duty cycle limited by maximum T_J	1.4	mJ		
Maximum power dissipation	P _D	T _C = 25°C	625	w		
		T _C =100°C	250	, vv		
Operating junction and storage temperatures range	T _J , T _{Stg}		- 40 to 150	°C		

Nell High Power Products

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V_{BR}	I _R = 100 μA	200 to 600				
		I _F = 150 A	-	1.1	1.35	V	
Maximum forward voltage	V _F	I _F = 320 A	-	1.3	1.54		
		I _F = 150 A, T _J = 100 °C	-	1	1.2		
Maximum reverse leakage current	I _R	T _J = 125 °C, V _R = V _{RRM}	-	0.9	3	μА	
Junction capacitance	C _T	V _R = 200 V	-	370	500		
Series inductance	L _S	From top of terminal hole to mounting plane	-	5	-	pF	

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
	t _{rr}	$I_F = 0.5A$, $I_R = 1A$, $I_{RR} = 0.25A$			75	-	
Reverse recovery time		T _J = 25 °C		-	90	140	ns
		TJ= 125 °C		-	290	440	
Peak recovery current	I _{RRM}	T _J = 25 °C		-	8.7	20	Α
		IRRM	TJ= 125 °C	IF = 60 A	-	18	30
Reverse recovery charge	Q _{rr}	T _J = 25 °C	$dI_F/dt = 200 A/\mu s$ $V_R = 200 V$	-	420	1100	nC
Reverse recovery charge		TJ= 125 °C		-	2600	7000	IIC
Peak rate of recovery current dl(rec)/dt	dl(rec)/dt	T _J = 25 °C		-	300	-	A/µs
		T _J = 125 °C		-	280	-	Α/μδ

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS		
Maximum junction and storage temperature range	T _J , T _{stg}	40	-	150	°C		
per leg	- R _{thJC}	-	-	0.23	°C/W K/W		
Thermal resistance, junction to case per module		-	-	0.115			
Typical thermal resistance, case to heatsink	R _{thCS}	-	0.12	-			
Weight		-	95	-	g		
vvoigitt		-	3.4	-	oz.		
Mounting torque (baseplate), M6 (1)		-	-	4	NI		
Terminal torque (terminal), M6		-	-	3	N⋅m		


Note

(1) Mounting surface must be smooth, flat, free of burrs of other protrusions. Apply a thin even film or thermal grease to mounting surface. Gradually tighten each mounting bolt in 5 to 10 lbf·in steps until desired or maximum torque limits are reached.

Nell High Power Products

Ordering Information Tabel

NKFD300 Series (5)

Nell High Power Products

Fig.1 Typical Forward Characteristics

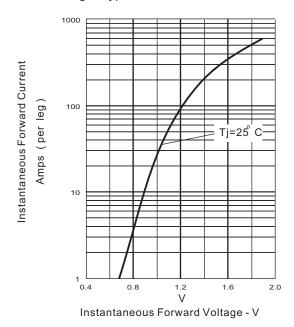


Fig.2 Forward Derating Curve

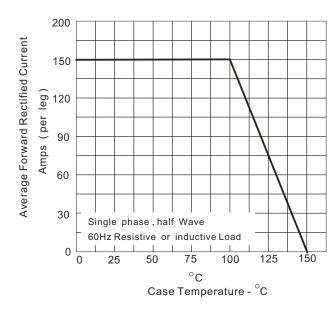


Fig.3 Peak Forward Surge Current

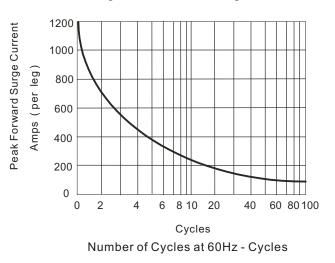


Fig.4 Typical Reverse Characteristics

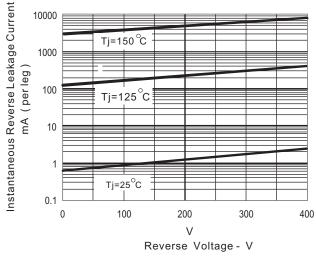
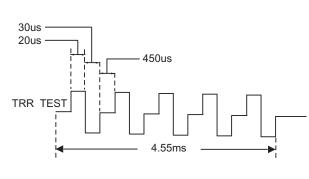
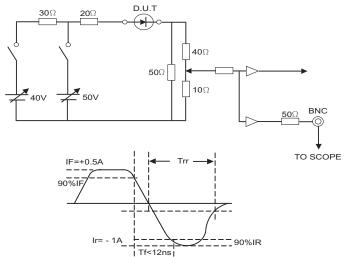




Fig.5 RG#1 Test Circuit

