preliminary (

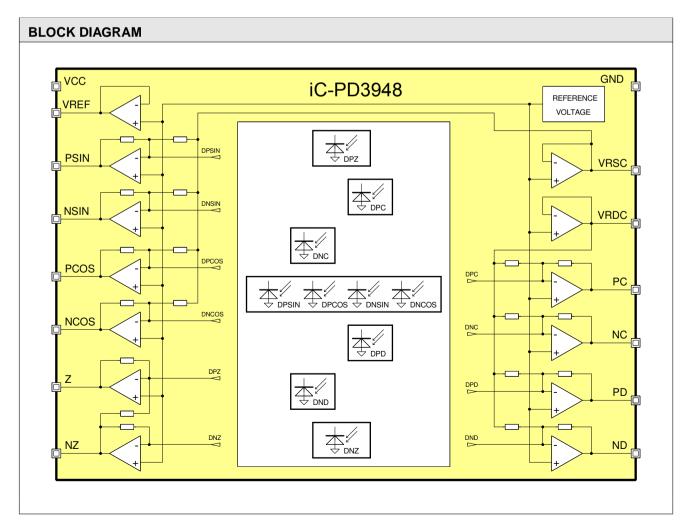
Rev B5, Page 1/10

FEATURES

Compact encoder sensor with differential scanning and sine outputs

Phased-array design for excellent signal matching Reduced cross talk due to moderate track pitch Ultra low dark currents for operation to high temperature Low noise amplifiers with high transimpedance of typ. $4\,\text{M}\Omega$ Short-circuit-proof, low impedance voltage outputs for enhanced EMI tolerance

Space saving QFN and optoBGA packages (RoHS compliant) Low power consumption from single 4.5 to 5.5 V supply Operational temperature range of -40 to +110 °C Suitable code disc:


PD2S 39-2048 (glass 1 mm)

OD Ø 39 mm, ID Ø 18.0 mm, optical radius 17.5 mm

APPLICATIONS

Incremental sine encoders with commutation information Motor feedback encoder AC and BLDC motor systems

15-pin optoBGA 6.2 mm x 5.2 mm x 1.7 mm 32-pin optoQFN 5 mm x 5 mm x 0.9 mm

Copyright © 2011 iC-Haus http://www.ichaus.com

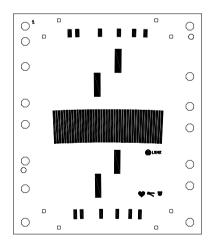
preliminary

Rev B5, Page 2/10

DESCRIPTION

iC-PD3948 is an optical sensor IC with integrated photodiodes whose signal currents are converted into output voltages by low-noise transimpedance amplifiers.

Due to a high transimpedance gain of typically $4 \, M\Omega$, output signal voltages of several hundred Millivolts are obtained at illumination levels of just 1 to $3 \, \text{mW/cm}^2$. In most cases complicated noise suppression measures are thus rendered unnecessary.


As the pin names would suggest, iC-PD3948 is typically applied as a sine encoder for motor feedback systems. To this end, iC-PD3948 provides sine and cosine signals with both a high resolution of 2048 PPR (plus an additional index signal) and a low resolution of 1 PPR (at C/D).

All code disc signal tracks are evaluated differentially; the high resolution sine signals are read by photodiodes in a phased array. The layout of the signal amplifiers is such that there is good paired channel matching, reducing the time and effort required for calibration to an absolute minimum.

The spectral sensitivity ranges from visible to near infrared light, with the maximum sensitivity close to a wavelength of 680 nm. An output voltage of 1 V is typical in low light conditions, for instance when iC-PD is illuminated at only 2 mW/cm² by a 740 nm LED. A relatively low LED current is enough to operate the sensor, proving beneficial to the life expectancy of the LED at high operating temperatures.

PACKAGES AND CHIP LAYOUT INFORMATION

PAD LAYOUT (2.88 mm x 3.37 mm)

PAD FUNCTIONS

No. Name Function

1 VCC +4.5...5.5 V Supply Voltage 2 VREF Reference Voltage Output

3 PSIN Sine Track +

4 NSIN Sine Track +

5 PCOS Cosine Track +

6 NCOS Cosine Track -

7 Z Z Index Signal

8 NZ Z Index Track -

9 ND D Track -

10 PD D Track +

11 NC C Track -

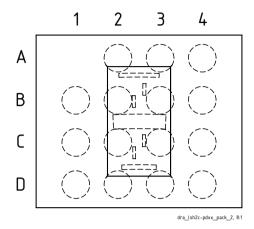
12 PC C Track +

13 VRDC D/C Track Reference

14 VRSC S/C Track Reference

15 GND Ground

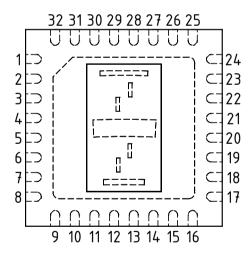
Notes: All outputs are analog voltage outputs.


preliminary (Caraca)

5-CH. PHASED ARRAY SINE ENCODER (39-2048)

Rev B5, Page 3/10

PIN CONFIGURATION oBGA LSH2C (6.2 mm x 5.2 mm)


PIN FUNCTIONS

No. Name Function

A2	VCC	+4.55.5 V Supply Voltage
А3	VREF	Reference Voltage Output
A4	GND	Ground
B1	PSIN	Sine Track +
B2	NSIN	Sine Track -
В3	VRDC	D/C Track Reference
B4	VRSC	S/C Track Reference
C1	PCOS	Cosine Track +
C2	NCOS	Cosine Track -
C3	NC	C Track -
C4	PC	C Track +
D1	Z	Z Index Signal
D2	NZ	Z Index Track -
D3	ND	D Track -

D Track +

PIN CONFIGURATION oQFN32-5x5 (5 mm x 5 mm)

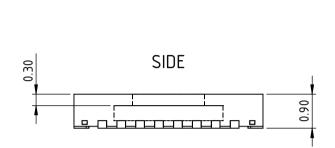
PIN FUNCTIONS

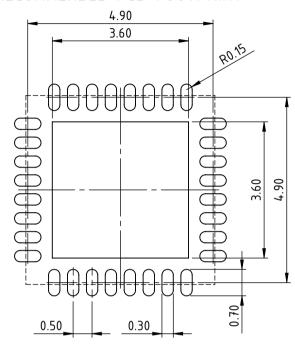
D4 PD

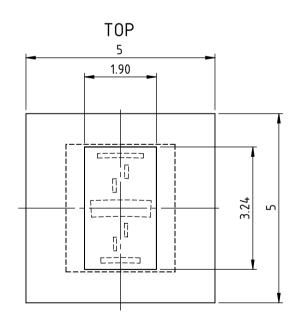
Nο	Name	Function	

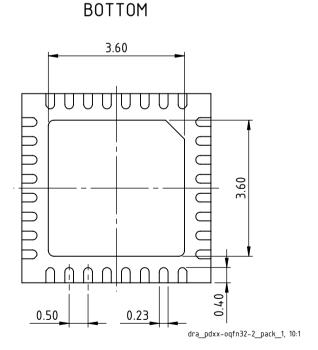
1 VCC	+4.55.5 V Supply Voltage
2 VREF	Reference Voltage Output
3 PSIN	Sine Track +
4 NSIN	Sine Track -
5 PCOS	Cosine Track +
6 NCOS	Cosine Track -
7 Z	Z Index Signal
8 NZ	Z Index Track -
17 ND	D Track -
18 PD	D Track +
19 NC	C Track -
20 PC	C Track +
21 VRDC	D/C Track Reference
22 VRSC	S/C Track Reference
23 n.c.	
24 GND	Ground
BP	Backside pad

Pin numbers marked n.c. are not in use. The backside paddle is not intended as an electrical connection point; when used as shield a single link to GND is permissible.




5-CH. PHASED ARRAY SINE ENCODER (39-2048)


Rev B5, Page 4/10


PACKAGE DIMENSIONS

RECOMMENDED PCB-FOOTPRINT

preliminary

Rev B5, Page 5/10

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VCC	Voltage at VCC		-0.3	6	V
G002	I(VCC)	Current in VCC		-20	20	mA
G003	V()	Pin Voltage, all signal outputs		-0.3	VCC +	V
					0.3	
G004	I()	Pin Current, all signal outputs		-20	20	mA
G005	Vd()	ESD Susceptibility, all pins	HBM, 100 pF discharged through 1.5 kΩ		2	kV
G006	Tj	Junction Temperature		-40	150	°C
G007	Ts	Chip Storage Temperature		-40	150	°C

THERMAL DATA

Item	Symbol	Parameter	Conditions		•		Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package oBGA LSH2C package oQFN32-5x5*	-40 -40		110 110	သိ
			(extended temperature range on request)				
T02	Ts	Storage Temperature Range	package oBGA LSH2C, package oQFN32-5x5*	-40		110	°C
T03	Tpk	Soldering Peak Temperature	package oBGA LSH2C				
			tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering			245 230	°C ℃
			TOL (time on label) 8 h; Please refer to customer information file No. 7 for details.				
T04	Tpk	Soldering Peak Temperature	package oQFN32-5x5*				
			tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering			245 230	ပ္ခံ
			MSL 5A (max. floor live 24 h at 30 °C and 60 % RH); Please refer to customer information file No. 7 for details.				

^{*)} Package qualification pending.

Rev B5, Page 6/10

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC = 4.5...5.5 V, Tj = -40..125 °C, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device						
001	VCC	Permissible Supply Voltage		4.5		5.5	V
002	I(VCC)	Supply Current	no load, photocurrents within op. range		12	16	mA
003	Vc()hi	Clamp-Voltage hi at all pins	I() = 4 mA			11	V
004	Vc()lo	Clamp-Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
Photo	sensors	1	1				
101	λ ar	Spectral Application Range	$Se(\lambda ar) = 0.25 \times S(\lambda) max$	400		950	nm
102	λ pk	Peak Sensitivity Wavelength			680		nm
103	Aph()	Radiant Sensitive Area	DPSIN, DNSIN, DPCOS, DNCOS DPC, DNC, DPD, DND DPZ, DNZ		0.075 0.033 0.042		mm² mm² mm²
104	$S(\lambda)$	Spectral Sensitivity	$\lambda_{LED} = 740nm$		0.5		A/W
105	$S(\lambda pk)$ max	Maximum Spectral Sensitivity	$\lambda_{LED} = \lambda pk$		0.55		A/W
106	E()mx	Irradiance For Maximum Signal Level	λ_{LED} = 740 nm, Vout() not saturated DPSIN, DNSIN, DPCOS, DNCOS	1.2	2.0	3.2	mW/ cm ²
			DPC, DNC, DPD, DND	3.0	4.5	6.5	mW/ cm ²
			DPZ, DNZ	2.8	4.2	6.0	mW/ cm ²
Photo	current Am _l	olifiers					
201	lph()	Permissible Photocurrent Operating Range		0		280	nA
202	η ()r	Photo Sensitivity (light-to-voltage conversion ratio)	$\lambda_{LED} = 740nm$	0.8	1.2	2.0	V/µW
203	Z()	Equivalent Transimpedance Gain	Z = Vout() / Iph()	2.69	4.0	5.46	ΜΩ
204	TCz	Temperature Coefficient of Transimpedance Gain			-0.12		%/°C
209	∆Z()pn	Transimpedance Gain Matching Of Paired Amplifiers	P channel vs. corresponding N channel	-0.2		0.2	%
210	△Vout()pn	Signal Matching	no illumination, any output to any output	-35		35	mV
211	△Vout()pn	Signal Matching	no illumination, P vs. N path per diff. channel	-2.5		2.5	mV
212	fc()hi	Cut-off Frequency (-3 dB)		120	180	280	kHz
213	VNoise()	RMS Output Noise	illuminated to 500 mV signal level above dark level, 500 kHz band width		0.5		mV
Signa	Outputs						
301	Vout()mx	Permissible Maximum Output Voltage	illumination to E()mxr, linear gain	2.45	2.72	3.02	V
302	Vout()d	Dark Signal Level	no illumination, load 20 kΩ vs. +2 V	600	770	1000	mV
303	Vout()acmx	Maximum Signal Level	Vout()acmx = Vout()mx - Vout()d	1.48	1.96	2.35	V
304	Isc()hi	Short-Circuit Current hi	load current to ground	100	420	800	μA
305	Isc()lo	Short-Circuit Current lo	load current to IC	250	480	700	μA
306	Ri()	Internal Output Resistance	f = 1 kHz	70	110	180	Ω
Signa	References	VRSC, VRDC					
401	Vout()	Reference Voltage		600	770	1000	mV
402	Isc()hi	Short-Circuit Current hi	current to ground	100	420	800	μA
403	Isc()lo	Short-Circuit Current lo	current to IC	250	480	700	μA
404	Ri()	Internal Output Resistance		70	110	180	Ω

Rev B5, Page 7/10

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC = 4.5...5.5 V, Tj = -40..125 °C, unless otherwise stated

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
Refere	Reference Voltages VREF						
501	Vout()	Reference Voltage	I(VREF) = 0+1.6 mA	600	770	1000	mV
502	dVout()	Load Balancing	I(VREF) = 0+1.6 mA	-10		+10	mV
503	Isc()hi	Short-Circuit Current hi	current to ground	200	420	800	μA
504	Isc()lo	Short-Circuit Current lo	current to IC	2	4.5	10	mA

5-CH. PHASED ARRAY SINE ENCODER (39-2048)

Rev B5, Page 8/10

APPLICATION CIRCUITS

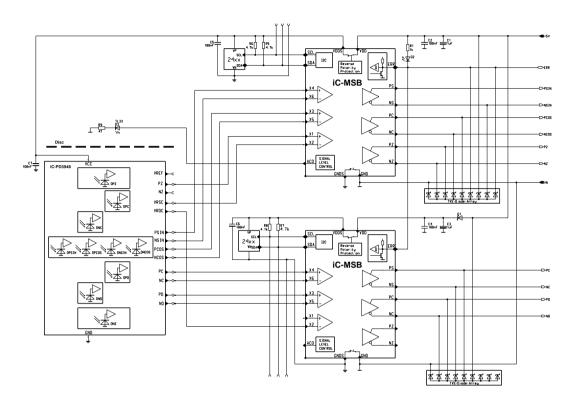


Figure 1: Application example motor feedback encoder

Figure 2: Application example motor feedback encoder

preliminary

Rev B5, Page 9/10

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

5-CH. PHASED ARRAY SINE ENCODER (39-2048)

Rev B5, Page 10/10

ORDERING INFORMATION

Package	Options	Order Designation
-		iC-PD3948 chip
15-pin optoBGA, 6.2 mm x 5.2 mm, thickness 1.7 mm		iC-PD3948 oBGA LSH2C
32-pin optoQFN, 5 mm x 5 mm, thickness 0.9 mm		iC-PD3948 oQFN32-5x5
	Suitable code disc	
	2048 PPR with 1 PPR OD Ø39 mm, ID Ø18.0 mm, optical radius 17.5 mm (glass 1 mm)	PD2S 39-2048
	- 15-pin optoBGA, 6.2 mm x 5.2 mm, thickness 1.7 mm 32-pin optoQFN, 5 mm x 5 mm,	- 15-pin optoBGA, 6.2 mm x 5.2 mm, thickness 1.7 mm 32-pin optoQFN, 5 mm x 5 mm, thickness 0.9 mm Suitable code disc 2048 PPR with 1 PPR OD Ø 39 mm, ID Ø 18.0 mm, optical radius 17.5 mm

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners