SILICON BRIDGE RECTIFIERS

Ready-for-use full-wave bridge rectifiers in a plastic encapsulation. The bridges are intended for use in equipment supplied from a.c. with r.m.s. voltages up to 80 V and are capable of delivering output currents up to 4,8 A. They are also suitable for use in hi-fi audio equipments and low-voltage industrial power supplies. They may be used in free air or clipped to a heatsink.

QUICK REFERENCE DATA

Input		BY225-100		200	
R.M.S. voltage	V _I (RMS)	max.	50	80 V	
Repetitive peak voltage	VIRM		100	200 V	
Non-repetitive peak current	l _I ISM	max.		100 A	
Peak inrush current	IIIM	max.		200 A	
Output Average current	I _{O(AV)}	max.		4,8 A	

MECHANICAL DATA

Dimensions in mm

Net mass: 6,8 g
Accessories supplied on request: 56379 (clip); see Accessories and MdWHM Data Sheet 4U.com
The sealing of the plastic withstands the accelerated damp heat test of IEC recommendation 68-2
(test D, severity IV, 6 cycles).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) www.DataSheet4U.com

Input		BY225	-100	200	
Non-repetitive peak voltage (t ≤ 10 ms)	V _{ISM}	max.	100	200	٧
Repetitive peak voltage	VIRM	max.	100	200	٧
Crest working voltage	v_{IWM}	max.	70	112	V
R.M.S. voltage (sine-wave)	VI(RMS)	max.	50	80	٧
Non-repetitive peak current; half sine-wave; $t = 20$ ms; with reapplied V_{IWMmax} $T_j = 25$ °C prior to surge $T_j = 150$ °C prior to surge	lism Ism	max. max.		100 85	
Peak inrush current (see Fig. 6)	IIIM	max.		200	Α
Output Average current (averaged over any 20 ms period;					
see Figs 2 and 3) heatsink operation up to T _{mb} = 115 ^o C heatsink operation at T _{mb} = 125 ^o C	[[] O(AV) [[] O(AV)	max. max.		4,8 3,6	
free-air operation at T _{amb} = 45 °C; (mounting method 1a)	lo(AV)	max.		3,2	Α
Repetitive peak current	IORM	max.		50	Α
Temperatures					
Storage temperature	T_{stg}		-40 to	+150	οС
Junction temperature	Ti	max.		150	οС
	www.DataSheet4U.com				

THERMAL RESISTANCE

From	junction	to	mounting	base
			CC140.C01	

 $R_{th j-mb} = 4.0 \text{ oC/W}$

Influence of mounting method

1. Free-air operation

The quoted values of $R_{th\,j-a}$ should be used only when no leads of other dissipating components run to the same tie-point (see Fig. 2).

Thermal resistance from junction to ambient in free air

a. Mounted on a printed-circuit board with 4 cm² of copper laminate to + and — leads

 $R_{th j-a} = 19.5 \text{ °C/W}$

b. Mounted on a printed-circuit board with minimal copper laminate

 $R_{th j-a} = 25 \text{ °C/W}$

2. Heatsink mounted with clip (see mounting instructions)

Thermal resistance from mounting base to heatsink

a. With zinc-oxide heatsink compound

 $R_{th mb-h} = 1.0 \text{ oC/W}$

b. Without heatsink compound

 $R_{th mb-h} = 2.0 \text{ °C/W}$

MOUNTING INSTRUCTIONS

- 1. Soldered joints must be at least 4 mm from the seal.
- The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.
- Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 150 °C.
- 4. Leads should not be bent less than 4 mm from the seal. Exert no axial pull when bending.
- 5. Recommended force of clip on device is 120 N (12 kgf).
- The heatsink should be in contact with the entire mounting base of the device and heatsink compound should be used.

CHARACTERISTICS

Forward voltage (2 diodes in series)

٧ĸ

< 2,3 V*

Reverse current (2 diodes in parallel)

$$V_R = V_{IWMmax}$$
; $T_i = 25 \, ^{\circ}C$

www.DataShee890.#Am

Fig. 2 The right-hand part shows the interrelationship between the power (derived from the left-hand graph) and the maximum permissible ambient temperature.

Output form factor $a_0 = I_{O(RMS)}/I_{O(AV)} = 0.707 \times I_{F(RMS)}/I_{F(AV)}$ per diode.

www.DataSheet4U.com

Fig. 3 The right-hand part shows the interrelationship between the power (derived from the left-hand graph) and the maximum permissible temperatures.

Output form factor $a_0 = I_{O(RMS)}/I_{O(AV)} = 0.707 \times I_{F(RMS)}/I_{F(AV)}$ per diode.

Fig. 4 Maximum permissible non-repetitive r.m.s. input current based on sinusoidal currents (f = 50 Hz); $T_j = 150$ °C prior to surge; with reapplied V_{IWMmax} .

www.DataSheet4U.com

Fig. 5.

Fig. 6 Minimum value of the total series resistance R_{tot} (including the transformer resistance) required to limit the peak inrush current.

Fig. 7.