

High Speed, Dual Operational Amplifier

NP271

FEATURES

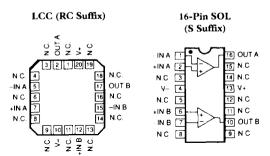
Excellent Speed: 8.5 V/µs typ Fast Settling (0.01%): 2 µs typ

Unity-Gain Stable

High Gain-Bandwidth: 5 MHz typ Low Input Offset Voltage: 200 μV max Low Offset Voltage Drift: 2 μV/°C max

High Gain: 400 V/mV min Outstanding CMR: 106 dB min Industry Standard 8-Pin Dual Pinout

Available in Die Form


GENERAL DESCRIPTION

The OP271 is a unity-gain stable monolithic dual op amp featuring excellent speed, $8.5 \text{ V/}\mu\text{s}$ typical, and fast settling time, $2 \mu\text{s}$ typical to 0.01%. The OP271 has a gain bandwidth of 5 MHz with a high phase margin of 62° .

Input offset voltage of the OP271 is under 200 μV with input offset voltage drift below 2 $\mu V/^{\circ}C$, guaranteed over the full military temperature range. Open-loop gain exceeds 400,000 into a 10 k\Omega load ensuring outstanding gain accuracy and linearity. The input bias current is under 20 nA limiting errors due to source resistance. The OP271's outstanding CMR, over 106 dB, and low PSRR, under 5.6 $\mu V/V$, reduce errors caused by ground noise and power supply fluctuations. In addition, the OP271 exhibits high CMR and PSRR over a wide frequency range, further improving system accuracy.

The OP271 offers outstanding dc and ac matching between channels. This is especially valuable for applications such as multiple gain blocks, high speed instrumentation and amplifiers, buffers and active filters.

PIN CONNECTIONS

NC = NO CONNECT

Epoxy Mini-DIP (P Suffix) 8-Pin Hermetic DIP (Z Suffix)

The OP271 conforms to the industry standard 8-pin dual op amp pinout. It is pin compatible with the TL072, TL082, LF412, and 1458/1558 dual op amps and can be used to significantly improve systems using these devices.

For applications requiring lower voltage noise, see the OP270. For a quad version of the OP271, see the OP471.

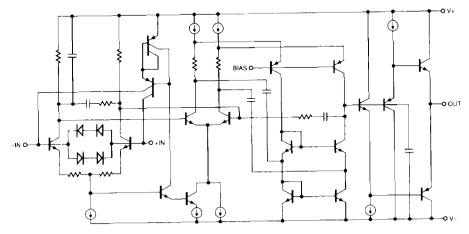


Figure 1. Simplified Schematic (One of the Two Amplifiers Is Shown.)

OP271-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 15$ V, $T_A = +25^{\circ}C$ unless otherwise noted)

			'	DP271A/	E	,	OP271F			OP271G		
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Vos			75	200		150	300		200	400	μV
Input Offset Current	l_{OS}	$V_{t,M} = 0 V$		1	10		4	15		7	20	nA
Input Bias Current	l ₁₈	$V_{CM} = 0 \text{ V}$		1	20		ti	40		12	60	nA
Input Noise Voltage Density	e _n	$f_{ij} = 1 \text{ kHz}$		7.6			7.6			7.6		nV/vHz
Large-Signal		$V_{ij} = \pm 10 \text{ V}$	1									
Voltage	A_{yo}	$R_t = 10 \text{ k}\Omega$	400	650		300	500		250	400		V/mV
Gain		$R_1 = 2 k\Omega$	300	500		200	3(1()		175	250		V/mV
Input Voltage Range	IVR	(Note 1)	+12	±12.5		+12	+12.5		+12	112.5		V
Output Voltage Swing	$V_{\rm O}$	$R_1 \ge 2 k\Omega$	+12	113		+12	113		±12	±13		V
Common-Mode Rejection	CMR	$V_{CM} = \pm 12 \text{ V}$	106	120		100	115		90	105		dB
Power Supply						!						
Rejection Ratio	PSRR	$V_S = \pm 4.5 \text{ V to } \pm 18 \text{ V}$		0.6	3.2		1.8	5.6		2.4	7.0	μV/V
Slew Rate	SR		5.5	8.5		5.5	8.5		5,5	8.5		V/µs
Phase Margin	O _m	$A_N = \pm 1$		62			62			62		Degree
Supply Current												
(All Amplifiers)	Lsy	No Load		4.5	6.5		4.5	6.5		4.5	6.5	mA
Gain Bandwidth Product	GBW			5			5			5		MHz
Channel Separation	CS	$V_O = 20 \text{ V p-p}$							1			
		$f_{\rm O} = 10~{\rm Hz}^2$	125	175		125	175			175		dB
Input Capacitance	C_{IN}		i	3			3		1	3		pF
Input Resistance	İ											
Differential-Mode	R _{IN}			0.4			0.4		ŀ	0.4		MΩ
Input Resistance						1						1
Common-Mode	R _{INCM}			20		1	20			20		$G\Omega$
Settling Time	ts	$A_V = \pm 1$, 10 V Step										
		to 0.01%		2			2			2		μs

NOTES

Guaranteed by CMR test.

Guaranteed but not 100% tested.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage
Differential Input Voltage ² ±1.0 V
Differential Input Current ² ±25 mA
Input Voltage Supply Voltage
Output Short-Circuit Duration
Storage Temperature Range , 65°C to +150°C
Lead Temperature (Soldering, 60 sec) +300°C
Junction Temperature (T_1) 65°C to +150°C
Operating Temperature Range
OP271A
OP271E, OP271F, OP271G 40°C to +85°C

Package Type	θ_{JA}^{3}	θ_{JC}	Units
8-Pin Hermetic DIP (Z)	134	12	C/W
8-Pin Plastic DIP (P)	96	37	"C/W
20-Contact LCC (RC)	88	33	"C/W
8-Pin SO (S)	9.2	27	"C/W

NOTES

Absolute maximum ratings apply to both DICF and packaged parts, unless otherwise noted.

The OP271's inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise performance. If different voltage exceeds ±1.0 V, the input current should be limited to 25 mA.

 $\theta_{f\chi}$ is specified for worst case mounting conditions, i.e., $\theta_{f\chi}$ is specified for device in socket for cerdip, P-DIP, and LCC packages, $\theta_{f\chi}$ is specified for device soldered to printed circuit board for SOL package.

ORDERING GUIDE

Model	V_{OS} max $T_A = +25$ °C	Temperature Range	Package Option*
OP271AZ	200 μV	55 °C to +125 °C	8-Pin Cerdip
OP271ARC/883	200 μV	55 C to +125 C	20-Contact LCC
OP271EZ	200 μV	40 C to +85°C	8-Pin Cerdip
OP271FZ	300 μV	40 C to +85"C	8-Pin Cerdip
OP271GP	400 µV	40 C to +85 C	8-Pin Plastic DIP
OP271GS	400 μV	40 C to +85 C	16-Pin SOL
OP271GS-REEL	400 µV	40°C to +85°C	16-Pin SOL
OP271GS-REEL7	400 μV	40 °C to +85° C	16-Pin SOL

^{*}For outline information see Package Information section.