N-Channel Depletion-Mode MOSFET Transistors

Product Summary

Part Number	$\mathbf{V}_{(\mathbf{B R}) \mathbf{D S V}}$ Min (V)	$\mathbf{r}_{\mathbf{D S}(\mathbf{o n)}} \mathbf{M a x}(\Omega)$	$\mathbf{V}_{\mathbf{G S}(\mathbf{o f f})}(\mathbf{V})$	$\mathbf{I}_{\mathbf{D}}(\mathbf{A})$
ND2406L	240	6	-1.5 to -4.5	0.23
ND2410L		10	-0.5 to -2.5	0.18
BSS129	230	20	-0.7 (min)	0.15

Features

- High Breakdown Voltage: 260 V
- Normally "On" Low r ${ }_{\text {DS }}$ Switch: 3.5Ω
- Low Input and Output Leakage
- Low-Power Drive Requirement
- Low Input Capacitance

Benefits

- Full-Voltage Operation
- Low Offset Voltage
- Low Error Voltage
- Easily Driven Without Buffer
- High-Speed Switching

Applications

- Normally "On" Switching Circuits
- Current Sources/Limiters
- Power Supply, Converter Circuits
- Solid-State Relays
- Telecom Switches

TO-226AA
(TO-92)

Top View
ND2406L
ND2410L

TO-92-18CD
(TO-18 Lead Form)

Top View
BSS129

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\boldsymbol{}} \mathbf{C}$ Unless Otherwise Noted)

Parameter		Symbol	ND2406L	ND2410L	BSS129	Unit
Drain-Source Voltage		$\mathrm{V}_{\text {DS }}$	240	240	230	V
Gate-Source Voltage		V_{GS}	± 30	± 30	± 20	
Continuous Drain Current ($\left.\mathrm{T}_{\mathrm{J}}=150{ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	0.23	0.18	0.15	A
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.14	0.12		
Pulsed Drain Current ${ }^{\text {a }}$		$\mathrm{I}_{\text {DM }}$	0.9	0.9	0.6	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.8	0.8	1.0	W
	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		0.32	0.32	0.4	
Maximum Junction-to-Ambient		$\mathrm{R}_{\text {thJA }}$	156	156	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to 150			${ }^{\circ} \mathrm{C}$

Notes
a. Pulse width limited by maximum junction temperature.

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document \#70198. Applications information may also be obtained via FaxBack, request document \#70612.

Specifications ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions	Typ ${ }^{\text {b }}$	Limits						Unit
				ND2406L		ND2410L		BSS129		
				Min	Max	Min	Max	Min	Max	
Static										
Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR)DSV }}$	$\mathrm{V}_{\mathrm{GS}}=-9 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$	260	240						V
		$\mathrm{V}_{\mathrm{GS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$	260			240				
		$\mathrm{V}_{\mathrm{GS}}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	260					230		
Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$		-1.5	-4.5	-0.5	-2.5			
		$\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$						-0.7		
Gate-Body Leakage	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 10		± 10		± 100	nA
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			± 50		± 50			
Drain Cutoff Current	$\mathrm{I}_{\mathrm{D} \text { (off) }}$	$\mathrm{V}_{\mathrm{DS}}=180 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-9 \mathrm{~V}$			1					$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			200					
		$\mathrm{V}_{\mathrm{DS}}=180 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-5 \mathrm{~V}$					1			
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$					200			
		$\mathrm{V}_{\mathrm{DS}}=230 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-3 \mathrm{~V}$							0.1	
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$							200	
Drain-Saturation Current ${ }^{\text {c }}$	$\mathrm{I}_{\text {DSS }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	350	40		40				mA
Drain-Source On-Resistance ${ }^{\text {c }}$	${ }^{\text {r }}$ DS(on)	$\mathrm{V}_{\mathrm{GS}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA}$	3.3							Ω
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA}$	4.5		6		10			
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	7.2		15		25			
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=14 \mathrm{~mA}$	4						20	
Forward Transconductance ${ }^{\text {c }}$	gfs	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{~mA}$	375					140		mS
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A}$	110							
Common Source Output Conductance	$\mathrm{g}_{\text {os }}$		70							$\mu \mathrm{S}$
Dynamic										
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{aligned} \mathrm{V}_{\mathrm{DS}}= & 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-5 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	70		120		120			pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		20		30		30			
Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {r }}$		10		15		15			
Switching ${ }^{\text {d }}$										
Turn-On Time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=830 \Omega \\ \mathrm{I}_{\mathrm{D}} \cong 30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GEN}}=-5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{G}}=25 \Omega \end{gathered}$	15							ns
	t_{r}		75							
Turn-Off Time	$\mathrm{t}_{\text {(off) }}$		40							
	t_{f}		100							

Notes

a . $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
b. For DESIGN AID ONLY, not subject to production testing.
c. Pulse test: PW $\leq 300 \mu$ s duty cycle $\leq 2 \%$.
d. Switching time is essentially independent of operating temperature.

Typical Characteristics ($25^{\circ} \mathrm{C}$ Unless Otherwise Noted)

On-Resistance and Drain Current

ND2406L/2410L, BSS129

Typical Characteristics ($\mathbf{2 5}^{\circ} \mathbf{C}$ Unless Otherwise Noted) (Cont'd)

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

