Intemational TopR Rectifier

HEXFET ${ }^{(1)}$ Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- P-Channel
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements

$$
\begin{aligned}
& V_{D S S}=-200 \mathrm{~V} \\
& R_{D S(\text { on })}=0.50 \Omega \\
& I_{D}=-11 \mathrm{~A}
\end{aligned}
$$

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of tast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
$\mathrm{ID}_{0}\left(2 \mathrm{~T}_{\mathrm{c}}=25^{\circ} \mathrm{C}\right.$	Continuous Drain Current, $V_{G S} @-10 \mathrm{~V}$	-11	A
ID (i) $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Continuous Drain Current, VGS 9 - 10 V	-6.8	
IDM	Pulsed Drain Current (1)	-44	
Po $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Power Disslpation	125	W
	Linear Derating Factor	1.0	W/oc
VGS	Gate-to-Source Voltage	+20	\checkmark
$E_{\text {AS }}$	Single Pulse Avalanche Energy (2)	700	mJ
$l_{\text {AR }}$	Avalanche Current (9)	-11	A
$E_{A B}$	Repetitive Avalanche Energy (1)	13	mJ
$\mathrm{dv} / \mathrm{dt}$	Peak Diode Recovery dv/dt (3)	-5.0	V/ns
$\begin{array}{\|l\|} \hline \text { Ts } \\ \text { TSTG } \\ \hline \end{array}$	Operating Junction and Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
	Soldering Temperature, for 10 seconds	300 (1.6 mm from case)	
	Mounting Torque, 6-32 or M3 screw	$10 \mathrm{fbf} \cdot \mathrm{in}$ ($1.1 \mathrm{~N} \cdot \mathrm{~m}$)	

Thermal Resistance

	Parameter	Min.	Typ.	Max:	Units
Rasc	Junction-to-Case	-	-	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Recs	Case-to-Sink, Flat, Greased Surface	-	0.50	-	
$\mathrm{R}_{\text {RJA }}$	Junction-to-Ambient	-	-	62	

Electrical Characteristics @ $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
$V_{\text {IBAjoss }}$	Drain-to-Source Breakdown Voltage	-200	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$
$\Delta V_{\text {caindiss }} / \Delta T^{\prime}$	Breakdown Voltage Temp. Coefficient	-	-0.20	-	$V /{ }^{\circ} \mathrm{C}$	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$
$\mathrm{P}_{\text {CS }}(\underline{0 n)}$	Static Drain-to-Source On-Resistance	-	--	0.50	Ω	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=-6.6 \mathrm{~A}$ (4)
$V_{G S}(\underline{\text { bib }}$)	Gate Threshold Voltage	-2.0	-	-4.0	V	$V_{D S}=V_{G S}, I_{D}=-250 \mu \mathrm{~A}$
$\mathrm{gis}^{\text {f }}$	Forward Transconductance	4.1	-	-	S	$V_{0 S}=-50 \mathrm{~V}, \mathrm{l}_{0}=-6.6 \mathrm{~A}$ (4
loss	Drain-to-Source Leakage Current	-	-	-100	$\mu \mathrm{A}$	$V_{D S}=-200 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}$
		-	-	-500		$V_{D S}=-160 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$
ligs	Gate-to-Source Forward Leakage	-	-	-100	nA	$V_{\text {as }}=-20 \mathrm{~V}$
	Gate-to-Source Reverse Leakage	-		100		$\mathrm{V}_{G S}=20 \mathrm{~V}$
$\mathrm{Q}_{\text {g }}$	Total Gate Charge	-	-	44	nc	$\mathrm{l}_{\mathrm{D}}=-11 \mathrm{~A}$
Q_{gs}	Gate-to-Source Charge	-	-	7.1		$V_{D S}=-160 \mathrm{~V}$
$\mathrm{Q}_{\text {gd }}$	Gate-to-Drain ("Miller") Charge	-	-	27		$V_{G S}=-10 \mathrm{~V}$ See Fig. 6 and 13 (4)
taton)	Turn-On Delay Time	-	14	-	ns	$V_{D D}=-100 \mathrm{~V}$
t_{r}	Rise Time	-	43			$\mathrm{ld}=-11$
taloti)	Turn-Off Delay Time	-	39	-		$\mathrm{R}_{\mathrm{C}}=9.152$
t_{i}	Fall Time Internal Drain inductance Intemal Source Inductance	-	38	-		$\mathrm{R}_{\mathrm{D}}=8.6 \Omega$ See Figure 10 (4)
$\begin{aligned} & L_{D} \\ & L_{s} \end{aligned}$		-	4.5 7.5	-	nH	Between lead, 6 mm (0.25 in .) from package and center of die contact
$\mathrm{C}_{\text {iss }}$	Input Capacitance	-	1200	-	pF	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {css }}$	Output Capacitance		370	-		$V_{\text {OS }}=-25 \mathrm{~V}$
$\mathrm{C}_{\text {ss }}$	Reverse Transter Capacitance	-	81	-		$j=1.0 \mathrm{MHz}$ See Figure 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Test Conditions	
Is	Continuous Source Current (Body Diode)	-	-	-11	A	MOSFET symbol showing the integral reverse $\mathrm{p}-\mathrm{n}$ junction diode.	
ISM	Pulsed Source Current (Body Diode) (1)	-	-	-44			
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	-	-	-5.0	V	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=-11 \mathrm{~A}$	$\mathrm{Gs}=0$
t_{r}	Reverse Recovery Time	-	250	300	ns	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}=-11 \mathrm{~A}} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	
Q_{rr}.	Reverse Recovery Charge	-	2.9	3.6	$\mu \mathrm{C}$		
tan	Fonward Turn-On Time	Inlrinsic turn-on time is neglegible (turn-on is dominatod by $\mathrm{Ls}+\mathrm{L}_{\mathrm{D}}$)					

Notes:

[^0]

Fig 1. Typical Output Characteristics, $\mathrm{T}=25^{\circ} \mathrm{C}$

Fig 3. Typical Transfer Characteristics

嫒

Fig 2. Typical Output Characteristics, $\mathrm{T} \mathrm{C}=150^{\circ} \mathrm{C}$

Fig 4. Normalized On-Resistance Vs. Temperature

Flg 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1506
Appendix B: Package Outline Mechanical Drawing - See page 1509
Appendix C: Part Marking Information - See page 1516
Appendix E: Optional Leadforms - See page 1525

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier ${ }^{\circledR}$, IR $^{\circledR}$, the IR logo, HEXFET ${ }^{\circledR}$, HEXSense ${ }^{\circledR}$, HEXDIP ${ }^{\circledR}$, DOL ${ }^{\circledR}$, INTERO ${ }^{\circledR}$, and POWIRTRAIN ${ }^{\circledR}$ are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

[^0]: (1) Repetitive rating; pulse width limited by max. junction temperature (See Figure 11)
 (3) $\operatorname{ISD} \leq-11 \mathrm{~A}, \mathrm{~d} / \mathrm{dt} \leq 150 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$, $\mathrm{T} . \leq 150^{\circ} \mathrm{C}$
 (3) $V_{D D}=-50 \mathrm{~V}$, starting $T_{J}=25^{\circ} \mathrm{C}, L=8.7 \mathrm{mH}$ $\mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{I}_{\mathrm{A}}=-11 \mathrm{~A}$ (See Figure 12)
 (2) Pulse width $\leq 900 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.

